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1 Introduction and Overview 

1.1 Introduction 

This document is a complete description of the Airborne Information for Lateral Spacing 
(AILS) alerting algorithms.   The documentation corresponds to the most current version of 
AILS used in simulation at NASA Langley Research Center (LaRC) and in test flights with 
NASA (B757 Aries) and Honeywell (Gulfstream IV) in CY99.  The original AILS which has 
been documented in Reference [3], had two versions of the algorithm: - “Full AILS” and 
“Parameter AILS.”  The full version was intended for in-flight use, while the parameter version 
was for lab testing only.  This document only describes the current version of the full AILS 
algorithm – the parameter AILS algorithm was not carried forward to match the full version. 

Modifications to the original AILS were the result of simulation and analysis work performed at 
Honeywell Technology Center and at NASA Langley Research Center.  The analysis at 
Honeywell focused on an assessment of the relative safety of the system by simulating many 
scenarios.  This analysis uncovered some weaknesses of the original algorithm related to the 
circular shape of the protected region. The NASA simulation activities in the B757 Integrated 
Flight Deck (IFD), part of the Research Simulation Integrated Laboratory (RSIL), focused on the 
human factors aspects of the system design.  These simulations helped tune the system 
parameters for pilot acceptance.  Both analyses performed suggested possible modifications to 
the algorithms, and NASA and Honeywell engineers collaborated to agree on the changes to the 
algorithms.   

Additional changes to the AILS algorithms were required as the focus shifted from simulation 
and analysis towards a real-world real-time implementation, such as dealing with non-parallel 
runways, offset thresholds, and non-zero runway latitude, longitude and altitude. 

The equations and logic to implement the algorithm changes were designed and implemented at 
Honeywell Technology Center, with some assistance from Bill Capron (a Lockheed contractor at 
NASA LaRC). 

Section 1.2 below presents a detailed list of the changes that were made to the AILS algorithm. 

The latest version of AILS, which contains these changes, was coded in PASCAL and tested in 
simulations and flight experiments in 1999.  (There is also an equivalent “C” version of the 
code that was used by Honeywell Technology Center to perform simulation and analysis work.)    

This document provides a Software Design Document-like description of this most current 
AILS software. 

1.2 Changes to the AILS Algorithm 

Following is a list of the major changes made to the AILS algorithm. 

• Added vertical dimension to alerting.  This required the addition of a vertical situation 
determination routine.  It also mandated changing from the existing point-of-closest-
approach formulations in favor of the solution of a quadratic equation to obtain entry and 
exit times into the horizontal alert region. 
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• Changed from circular horizontal protection to elliptical protection zone. 

• Added the capability for non-parallel runways. 

• Added the capability for vertically offset runway thresholds. 

• Added the capability for displaced runway thresholds. 

• Added capability to handle real-world-type localizer and glide-path definitions. 

• Changed from bank-angle based turn predictions to track-rate based turn predictions. 

• Added actual states capability.  This represents a departure from the nominal mode that 
requires both vertical and lateral “snapping” of the aircraft to the glide-path and localizer 
respectively.   Much of the complication in this task involved the need to transform the 
elliptical alerting coefficients to an alternate coordinate system in order to slave the ellipse to 
the aircraft frame of reference during the actual-states mode. 

• Added the protected escape zone capability (not engaged during RSIL and flight test 
activity). 

• Removed bank angle bias. 

• Revised the straight track/curved track logic in the main AILS executive Larcalert_full. 

• Added logic to handle corner cases/divide by zero cases introduced by the vertical and 
elliptical alert region modifications. 

• Added the use of a first order filter for improved track rate prediction and turn performance 
(and also for improved false alarm performance). 

• Added maximum turn-time capability.  This is a limit on the “project ahead” time when the 
aircraft is in a turning situation that requires AILS to perform “fan” projections.  (This 
feature was not engaged during RSIL and flight test activity.) 

1.3 Document Overview (How to Use This Document) 

The following table describes the major subsections of this document.  

 Section name Description 

1.0 Introduction Introduction and list of major additions to original AILS 

2.0  AILS Algorithm 
Overview 

Provides the reader with an introduction and overview of the AILS 
algorithm. 

3.0 AILS Coordinate 
Frame 
Descriptions 

Describes the coordinate systems used in AILS.  Sound knowledge 
and understanding of the coordinate systems used is essential for the 
implementation of AILS, either in simulation or in real-time 
systems.  

4.0 AILS Top Level 
Description With 

Describes the main functional blocks of AILS and how those blocks 
are organized.  The flow charts further enhance understanding of the 
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 Section name Description 

Flow Charts elements and that comprise the major blocks and routines. 

5.0 AILS Data 
Descriptions And 
Pseudo-code 

Contains the complete descriptive data definitions as well as pseudo-
code for the core AILS algorithm.  The information in this section is 
comprehensive and sufficient for a software programmer to program 
the full functionality of the current core AILS algorithm. 

6.0 Algorithm Pre 
and Post Call 
Requirements 

Although detailed pseudo-code is provided for core AILS, some pre 
and post-processing is required to set up AILS and also to fully 
duplicate the functionality of the current implementation of AILS.   

This section provides descriptions on how to set up and call AILS, as 
well as recommended preprocessing or post processing.  The 
information provided is absolutely required for the implementers of 
AILS (either for simulation or real system implementation). 

7.0 AILS Equations Some of the key equations of AILS are derived. 

A Acronyms and 
Abbreviations 

List of acronyms and abbreviations. 

B Glossary Descriptions of terminology. 

C References List of references. 

Table 1.3.1 Document Reference Table 
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2 AILS Algorithm Overview 
This section provides an introduction, overview description of the AILS algorithm. 

2.1 General Algorithm Description 

The purpose of AILS is to provide multiple levels of alerting for pairs of aircraft that are in 
parallel approach situations.  AILS will assess blame and issue alerts to the “blundering” aircraft 
prior to the issuing similar alerts to the “innocent” aircraft.   The algorithm takes advantage of 
current aircraft states as well as known “intent” information in order to project ahead for threat 
determination.   This forward projection is executed based on current positions, velocities, 
altitudes, turn rates, and climb rates.  AILS threat determination consists of 2 types of alerting 
checks, with 2 levels for each alert type. 

1. Adjacent ship threat to own ship (caution- and warning-alerts levels). 
The solid lines in Figure 2.1.1 AILS Fan and Intrusion Check Scenarios show this. 

2. Own ship threat to adjacent ship (caution- and warning-alerts levels). 
The dashed lines in Figure 2.1.1 AILS Fan and Intrusion Check Scenarios show this. 

Cumulatively, there are four levels of alerts that are ascending in degree of criticality. Table 
2.1.1 describes these levels and their associated attributes. 

 

alert level alert type associated scenario commanded action 

level 1 caution own ship threatens adjacent 
ship 

issue PATH alert to adjacent ship 

level 2 caution adjacent ship threatens own 
ship 

issue TRAFFIC alert to own ship 

level 3 warning own ship threatens adjacent 
ship 

issue EEM alert to adjacent ship 

level 4 warning adjacent ship threatens own 
ship 

issue EEM alert to own ship 

Table 2.1.1 AILS Alert Level Attributes 

An aircraft that is off of its approach path and threatening another aircraft is designated in AILS 
nomenclature as the “intruder.”   The threatened aircraft is designated as the “evader.”   In a 
typical intrusion scenario where the intruders ignore their alert messages, the alerts will be 
issued in the following sequence: 

1. Intruding aircraft pilots receive a PATH caution alert. 

2. Evader aircraft pilots receive a TRAFFIC caution alert. 

3. Intruder aircraft pilots receive a commanded EEM warning. 

4. Evader aircraft pilots receive a commanded EEM warning. 



 
 

5

Figure 2.1.1 AILS Fan and Intrusion Check Scenarios 
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During AILS’s threat evaluation, forward projections are performed from the current state out 
towards a finite time in the future.   The intruder’s state is projected forward to see if it will 
puncture the evader’s protection zone.  This zone consists of a linear distance above and below 
the aircraft, and an elliptical protection area in the horizontal plane.  Table 2.1.2 shows some of 
the key AILS alerting parameters. 

parameter level 1 level 2 level 3 level 4 
downrange (ft) 5000  3500  3400  2500 
cross-range (ft) 1800  1300  1250  900 
alert zone above (ft) 1800  1300  1250  900  
alert zone below (ft) 1800  1300  1250  900  
alert time (sec) 30 22  21  16  

Table 2.1.2 Current AILS Alerting Parameters 

Note that in order to achieve the desired alerting sequence as previously described and 
illustrated in Table 2.1.1, the alert zone sizes and alerting times decrease with the increasing 
alert levels. 

2.2 Elliptical Protection Zone 

The AILS alerting algorithm is 3-dimensional.  The protected space around the aircraft is 
elliptical in the horizontal plane.   The protected aircraft is at the center of the ellipse.  Typically, 
the major axis of the ellipse is aligned in the direction of the final approach (See section 2.9 for 
the exception to this alignment).  In the vertical plane, the protected region is a specified linear 
distance above and below the aircraft.  Projections of the intruder into this protected area will 
cause alerts to be issued. 

The protection ellipse is specified by downrange and cross-range parameters which represent the 
major and minor axes of the ellipse, respectively.  Setting the downrange equal to the cross-
range would result in a cylindrical protection zone.  This cylindrical “hockey puck” was the 
shape of the protection zone in an initial AILS design.  Analysis has shown that employing an 
ellipse with the major axis in the direction of travel increases performance of the overall system. 

2.3 AILS Fan 

AILS requires that if the intruder is executing a turn, the algorithm will project this turn through 
the required time.  In addition to this, AILS will also assume that at designated points during the 
turn, the intruder may level out and fly in a straight line.  These straight paths are also projected 
through the required time period.  These straight segments are known as “tangent tracks.”  These 
projections result in a “fan” of trajectories that are evaluated for collision threat potential.  The 
AILS “fan” represents an added level of safety check and conservatism (see Figure 2.1.1 on page 
5). 

2.4 AILS Forward Projection Assumptions 

As AILS performs threat determinations, both aircraft states are projected forward in time.  
Several assumptions are made as these extrapolations are carried out: 
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• Both aircraft are assumed to fly with a constant ground speed. 

• Unless actual states mode is in effect, the evader is assumed to be initialized on the localizer 
beam and to stay on the localizer beam for the duration of the current prediction times.  

• The intruder is assumed to be flying a constant radius turn at the current turn rate and can 
level out at any time and fly straight along a track tangent to the turn arc.  The current 
configuration is set compute turn rate based on track rate that has been derived from GPS 
velocities, but it can also be configured to use bank angle. 

• The AILS forward search time step: (deltat AILS) is an input and is currently set to the value 
of 0.5 seconds.  This time step will determine the search resolution when AILS is performing 
the intruder and evader projections in it’s process of threat determination. 

• The tangent tracks are computed every N time steps, where N is chosen dynamically such 
that the tangent tracks are taken between every 1.5 to 3.0 degrees.  (The computation of the 
tangent track frequency assumes that the time step is 0.5 seconds, or a fraction of that.  It 
should still work if the time step is different, but it may not produce tracks between 1.5 and 
3.0 degrees 

2.5 Snapping vs. Actual States 

The AILS algorithm works on designated pairs of aircraft.  For a particular set of aircraft, in 
each respective aircraft’s computer, two scenarios are considered:  

1. Where the own ship is considered as the intruder and the adjacent ship is considered as the 
evader;  

2. Where the own ship is considered as the evader and the adjacent ship is considered as the 
intruder.   

In each scenario, the intruder’s current state information is used to project the intruder’s 
anticipated position as a function of time.  The evader’s actual current states are used with the 
exception of cross-range and altitude.  Instead, in accordance with the “intended states” 
philosophy, the evader’s assumed position for cross-range and altitude are “snapped” to the 
localizer and glide slope, respectively.  This protects the region on the intended path where the 
aircraft is most likely to be in the future. 

If the aircraft is NOT established on its approach, its actual states will be used regardless of 
whether the scenario requires it to be intruder or evader. The reason for the “snapping” is the 
design philosophy which makes use of the known intended approach path of an aircraft. 

2.6 On Approach/Off Approach Criteria For Snap Determination 

If an aircraft is substantially off of it’s approach, it is not appropriate to “snap” that aircraft to 
the approach path.  “Snapping” under this condition would significantly misrepresent the 
position of the aircraft, which could lead to either false alarms or missed alerts.  Following is the 
criteria used to determine if an aircraft is significantly off of its approach: 

Aircraft declared NOT to be on approach if: 
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1. More than 2 dots of vertical deviation. 

2. More than 2 dots of lateral deviation OR more than 400 ft of lateral deviation to either 
side of the approach path. 

At very large distances from aircraft to the runway datum point, 2 dot angular offsets can result 
in large deviations from the center approach on the order of thousands of feet.  Therefore the 
400 foot lateral criteria was added to the angular dots as a limiting factor on how far AILS will 
snap an aircraft.    The definition used for 2 dots was the following: 

2 dots of horizontal deviation = 2 degrees to either side of localizer path 

2 dots of vertical deviation = .7 degrees above and below the glide path 

These values were hard-coded in the software.  If the localizer or glide path sizes change, these 
values would need to be made input parameters. 

The reference point for defining these angles is the Glide Path Intercept Point (GPIP). 

2.7 On Approach/Off Approach Intruder and Evader Track 

During AILS’s threat determination scenarios, if the aircraft that is designated as the evader is 
determined to be on-approach, the track angle for that aircraft is considered to be congruent with 
the approach.   This is in conformance with the AILS “snapping” philosophy.   If the aircraft is 
determined to be off-approach, then the track angle used for the evader will be the actual track 
angle of the aircraft (which is specified in the runway coordinate frame).  If this aircraft is in a 
turn, the current track of the aircraft will be used and the aircraft will be presumed to fly straight 
along that track. 

In AILS threat determinations, the intruder’s actual states are always used regardless of whether 
the intruder is on-approach or off-approach. 

2.8 Ellipse Size Adjustments If Aircraft is Off Approach 

If an aircraft is determined to be off-approach according to the criteria listed above, it is NOT 
snapped to the approach when it is playing the evader role during AILS threat determinations.  
The original AILS algorithm always snapped one aircraft to the approach path, so if that aircraft 
was then threatened it was obvious which aircraft was at fault and which aircraft should be 
alerted first.  With the snapping taken away, and no other changes made, both aircraft may get 
an alert at a similar time.  Since we have taken away a basic assumption of AILS, we need a new 
method of assessing blame and alerting the blundering aircraft first.   

To address blame when one aircraft is off-approach, we will use the fact that they are off-
approach to determine who is at fault.  When one or both aircraft are off their approach the 
alerting parameters are modified to get the alerts to occur in the proper order.   Also, the way 
alerts are treated is modified to properly assess blame.  Table 2.8.1 below shows how the alert 
parameters and alert logic are modified depending upon who is off-approach. 

A few general statements can be made to summarize the table below.  If my aircraft is off 
approach, and the adjacent aircraft is on-approach, then my aircraft is blamed for all alerts.  So, 
my aircraft’s computer will use level 1 & 3 alert parameters for all 4 scenarios listed in Table 
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2.1.1 above, and the adjacent aircraft’s computer will use level 2 & 4 alert parameters for all 4 
scenarios.  The blundering aircraft will thus always get the alerts first.  To ensure that blame is 
proper assessed, the blundering aircraft will only get level 1 & 3 alerts, and the innocent aircraft 
will only get level 2 & 4 alerts. 

 

 Adjacent ship is on approach Adjacent ship is off approach 

Own ship is on 
approach 

Nominal ellipse parameters for 
own ship and adjacent ship. 

Set level 1 & 3 alert parameters equal to 
level 2 & 4 alert parameters.  If level 1 
or 3 alert occurs, mark it as a level 2 or 
4 alert. 

Own ship is off 
approach 

Set level 2 & 4 alert parameters 
equal to level 1 & 3 alert 
parameters.  If level 2 or 4 alert 
occurs, mark it as a level 1 or 3 
alert. 

Set level 2 & 4 alert parameters equal to 
level 1 & 3 alert parameters. 

 

Table 2.8.1 On Approach/Off Approach Ellipse and Alert Determinations 

 

If both aircraft are off-path, then we no longer assess which aircraft is to blame for the collision 
threat.  It will be likely that one aircraft is just slightly off path and the other is blundering, but 
they are treated equally.  Both aircraft will use the level 1 & 3 alert parameters to get the alerts 
to occur sooner. 

2.9 Protection Ellipse Frame of Reference 

A protection ellipse is always centered at the protected aircraft.  The orientation of the ellipse 
will depend on whether or not the aircraft is on or off of its approach.  If an aircraft is on the 
approach path, the protection ellipse’s orientation is slaved to that aircraft’s local runway 
coordinate system: The major axis of the ellipse is aligned with the approach path.   If an 
aircraft is off of the approach path, than the protection ellipses are slaved to aircraft direction of 
travel: The major axis of the ellipse points in the direction of that aircraft’s track angle (Figure 
2.9.1).  
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Figure 2.9.1 Ellipse Slaving To Aircraft Frame vs Approach Frame 

 

2.10 Protected Escape Zone (Currently Disabled) 

The AILS algorithm has an incorporated “protected escape zone” capability that does not use 
any prediction of future aircraft positions.  This zone is chosen as a rectangular shape around the 
protected aircraft.  If the other aircraft is inside of this protected area, an EEM command is 
issued to the protected aircraft. 

The protected escape zone is defined by setting the appropriate parameters that are defined in 
Table 2.10.1.  Lateral protection to the EEM side of the evader is extended to infinity.   This 
protected escape zone is clearly seen in the diagram in Figure 2.10.1.  Section 6.12.4 (on 
Default Protected Escape Zone Parameters) shows how to set these parameters in order to 
disable the protected escape zone functionality.     

The original purpose of this feature was to reduce the induced-collision rate by protecting the 
evader escape route.  However, as we tested this feature, we discovered that it not only 
drastically increased the frequency of false alerts, but also increased the frequency of induced 
collisions.  In analyzing the nature of the induced collision scenarios, we came up with the idea 

Adjacent Ship Runway

Own Ship Runway

y
x

x

y

While on approach, the protection ellipses are slaved to
the runway approach coordinate system.

If off approach, the protection ellipses are slaved
to the aircraft body axis and heading. 
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of the elliptical protection zone.  The elliptical protection zone gave us the performance we 
were looking for, making the rectangular protected escape zone unnecessary.  Therefore, the 
currently implemented AILS configuration has this feature disabled by selecting parameters 
appropriately. 

 

 

Parameter Definition 

protected lateral 
(distance 
towards 
adjacent 
approach) 

Lateral cross-range distance in direction of the intruder’s runway.  This is 
specified as a positive number as shown in Figure 2.10.1.  Setting this to a 
large negative number pushes the zone far to the “escape” side thus 
effectively turning off the zone.  The EEM side of the protected escape zone 
automatically extends to infinity. 

distance ahead Downrange distance ahead of the aircraft. 

distance below Downrange distance behind the aircraft. 

distance above Vertical distance above the aircraft. 

distance behind Vertical distance below the aircraft. 

Table 2.10.1 Protected Escape Zone Parameter Definition 
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Figure 2.10.1 Protected Escape Zones 

2.11 AILS Turn Time (Currently Disabled) 

The AILS turn time parameter limits the length of time that AILS will project a current turn 
when the algorithm is performing the fan.  This value is not to be confused with the normal 
AILS alerting time parameters which determine how far ahead AILS projects ahead.  The 
distinguishing factor is if the aircraft is currently in a turn, the current track and the tangent 
tracks projections will be governed by the AILS alerting parameter, but the time that the turn is 
maintained will be limited by the turn time. 

Example of AILS Turn Time:  If the AILS turn time is set to 1 second, the current turn will be 
carried out for only a second.  After that time, in conformance with the “fan” logic, the aircraft 
will be assumed to level out and fly in a straight path.  The remaining time of the projection of 
this straight path will be governed by the appropriate caution and warning AILS alerting times. 

This turn limiting was originally introduced in an effort to decrease false alarms due to 
turbulence and pilot over adjustments.  The current default configuration is to set the turn time 
to a value that would render the turn time being disabled.  This is done by selecting a large 
number that is greater than the largest AILS alerting time: 

AILS turn time = 99 sec (disabled) 

ajpsi_offset’

ajy_dp_offset

Adjacent Ship Runway

ajx_dp_offset

ajy_dp_offset’
Own Ship Runway

y
x

ajpsi_offset

x

y

Adj datum
point and
origin

Ownship datum point 
and origin

Own Ship Protected 
Escape Zone

protected
ahead

protected
lateral

EEM side protected
zone extends to infinity

protected
behind

protected
lateral

Adjacent Ship Protected 
Escape Zone

EEM side
protected zone
extends to infinity

protected
behind

protected
ahead
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2.12 Track Rate Deadband 

A dead band is applied to aircraft track rates that are close to zero.  The purpose for this is to 
prevent unnecessary turns and fans resulting from minor track rate perturbations and 
turbulence. If an aircraft’s track rate is at or below this value, a zero value is selected as the 
aircraft track rate. The following value of the track rate dead band reflects the value used in the 
most current configuration. 

 

AILS track rate deadband = .00024 rad/sec 
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3 AILS Coordinate Frame Definitions 

3.1 Transformation From Earth To Local Coordinates 

AILS uses two coordinate systems – one aligned with the own ship’s intended approach, and one 
aligned with the adjacent ship’s intended approach.  The coordinate system origins are located at 
the approach datum points (typically the runway thresholds), and the x-axes are aligned with the 
approach centerlines (typically the runway centerlines).  Standard navigation data for each AILS 
aircraft is converted to these local coordinate systems (Figure 3.1.1). 

Figure 3.1.1 Transformation From Spherical Earth To Local Runway Coordinates 

Note that the “z” axis points down but the altitude or “h” axis points up and is positive up.  This 
is the main axis of vertical reference in the AILS algorithms. 

3.2 Definition Of Internal AILS Coordinate System 

Figure 3.2.1 defines AILS runway coordinate system as viewed from above looking down, and 
Table 3.2.1 describes the variables used in the Figure.  Each aircraft in the AILS pair considers 
itself to be the own ship.  The origin of the own ship coordinate system is at the center of that 
aircraft’s datum point.  The x-axis points straight down the runway length and is positive in the 
landing direction.  The y-axis points 90 degrees to the right (from the x positive direction).  The 
x-axis direction is commonly known as downrange while the y-axis direction is commonly 
known as the cross-range. 

The true z axis is not referenced.  Instead, altitude above the runway threshold plane (h) is used. 

The adjacent ship refers to the aircraft performing the parallel approach with the own ship.  
The origin of the adjacent ship coordinate system is at the adjacent ship’s datum point.  The x-
axis points straight down the approach centerline and is positive in the landing direction.  The y-
axis points 90 degrees to the right (from the x positive direction).  The x-axis direction is 

[latitude, longitude, msl altitude]

coordinate transform

x
y

h

[osx, osy, osh]
(z axis is not referenced)

Coordinate transformation is from geodetic lat, lon, and msl alt to local runway which is 
specified in terms of the datum point.

own ship datum point
(could be runway threshold)

z
positive track angle
rotation

+
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commonly known as downrange while the y-axis direction is commonly known as the cross-
range. 

As AILS performs it’s intrusion checks it will designate one aircraft as an intruder and the other 
aircraft as the evader.   During these checks, both aircraft have to placed in a single frame of 
reference.  AILS chooses the intruder frame of reference to contain the intruder and evader 
positions. 

 

 

Figure 3.2.1 AILS Runway Coordinate System 

 
 
 

variable description 
osxpos downrange position of own ship relative to own ship coordinate system 
osypos cross-range position of own ship relative to own ship coordinate system 
oshpos h position of own ship relative to own ship coordinate system 
ajxpos downrange position of adjacent ship relative to adjacent ship coordinate 

system 

ajpsi_offset’  (negative shown)

ajy_dp_offset

Adjacent Ship Runway

ajxpos

ajx_dp_offset’

ajypos

ajx_dp_offset

ajy_dp_offset’

osypos

osxpos

Own Ship Runway

y
x

ajpsi_offset
(positive shown)

x

y

adjacent ship
datum point

own ship 
datum point

Top view looking down
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variable description 
ajypos  cross-range position of adjacent ship relative to adjacent ship 

coordinate system 
ajhpos h position of own ship relative to own ship coordinate system 
ajx_dp_offset downrange offset of adjacent ship datum point from own ship datum 

point in own ship coordinates 
ajy_dp_offset cross-range offset of adjacent ship datum point from own ship datum 

point in own ship coordinates 
ajh_dp_offset altitude offset of adjacent ship datum point from own ship datum point 

in own ship coordinates 
ajpsi_offset angle offset of adjacent ship runway from own ship runway in own ship 

coordinate system 
ajx_dp_offset’ downrange offset of own ship runway from adjacent ship runway in 

adjacent ship coordinate system 
ajy_dp_offset’ cross-range offset of own ship runway from adjacent ship runway in 

adjacent ship coordinate system 
ajh_dp_offset’ altitude offset of own ship runway from adjacent ship runway in 

adjacent ship coordinate system 
ajpsi_offset’ angle offset of own ship runway from adjacent ship runway in adjacent 

ship coordinate system 
x0 x position of the intruder aircraft relative to the intruder frame 

coordinate system 
y0  y position of the intruder aircraft relative to the intruder frame 

coordinate system 
h0 h altitude of the intruder aircraft relative to the intruder frame 

coordinate system 
xloc x position of the evader aircraft relative to the intruder frame coordinate 

system 
yloc y position of the evader aircraft relative to the intruder frame coordinate 

system 
hloc h altitude of the evader aircraft relative to the intruder frame coordinate 

system 

Table 3.2.1 Definition Of AILS Runway Frame Position Variables 

 

3.3 Side and Downrange Views of AILS Internal Coordinate System 

Figure 3.3.1 shows the side view of the AILS coordinate system.  The “y” axis is pointing out of 
the page towards the reader in this diagram.  The diagram also shows the relationship between 
the external MSL altitude and the internal AILS variable oshpos which is specified relative to 
the runway datum point. 
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Figure 3.3.1 Side View Of Ails Coordinate System 

 

Figure 3.3.2 shows a “downrange” view of the AILS coordinate system. This is the runway 
scenario as viewed in the landing direction.  The “x” axis in this diagram is positive into the 
page.  The variable ajh_dp_offset is positive as shown. 

Figure 3.3.2 Downrange View Of Local AILS Coordinates 

x

h

MSL Altitudeoshpos

Exaggerated view of Earth curvature.  h is positive up

own ship datum point

h

y

oshpos

h

y

ajhpos
own ship

adjacent ship

own ship datum point

adjacent ship datum point

Downrange View: x is positive into the page
        h is positive up

ajh_dp_offset
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3.4 Transformation Equations Between Parallel Runway Coordinates 

Recall that as AILS performs a threat evaluation of one ship against another, it will choose the 
intruder’s frame of reference as a common frame to work in.  Following are the equations that 
perform the necessary transformations to establish a single coordinate system that corresponds to 
a particular scenario.  Refer back to Figure 3.2.1 on page 15 for the corresponding geometry.  
The nomenclature convention is that the evader variable is given a “loc” tag (xloc, yloc), while 
the intruder variable receives a “0” tag  (x0,y0). 

State Transformations  With NO Snapping to Glideslope and Localizer 
Scenario 1: The adjacent ship is assumed to be the intruder 
 
x0 = ajxpos 
y0 = ajypos 
h0 = ajhpos 
xloc = (osxpos – ajx_dp_offset) * cos(ajpsi_offset) + (osypos-ajy_dp_offset) * sin(ajpsi_offset) 
yloc = (osxpos – ajx_dp_offset) * -sin(ajpsi_offset) + (osypos-ajy_dp_offset) * cos(ajpsi_offset) 
hloc = oshpos – ajh_dp_offset 

Scenario 2: The own ship is assumed to be the intruder 

x0 = osxpos 
y0 = osypos 
h0 = ajhpos 
ajpsiloc’ = -ajpsiloc 
ajxloc’ = ajxloc * cos(ajpsiloc) + ajyloc * sin(ajpsiloc) 
ajyloc’ = -ajxloc * sin(ajpsloc) + ajyloc * cos(ajpsiloc) 
xloc = (ajxpos + ajx_dp_offset’) * cos(ajpsi_offset’) + (ajypos + ajy_dp_offset)’*sin(ajpsi_offset’) 
yloc = (ajxpos + ajx_dp_offset’) * -sin(ajpsi_offset’) + (ajypos + ajy_dp_offset)’*cos(ajpsi_offset’) 
hloc = ajhpos + ajh_dp_offset 

Table 3.4.1 State Variable Transformations With NO Snap  

State Transformations  With Snapping to Glideslope and Localizer 
Scenario 1: The adjacent ship is assumed to be the intruder 

x0 = ajxpos 
y0 = ajypos 
h0 = ajhpos 
xloc = (osxpos – ajx_dp_offset) * cos(ajpsi_offset) + (-ajy_dp_offset) * sin(ajpsi_offset) 
yloc = (osxpos – ajx_dp_offset) * -sin(ajpsi_offset) + (-ajy_dp_offset) * cos(ajpsi_offset) 
hloc =  -ajh_dp_offset + ostch – osxpos*tan(osglide) 
 
Scenario 2: The own ship is assumed to be the intruder 

x0 = osxpos 
y0 = osypos 
h0 = oshpos 
ajpsiloc’ = -ajpsiloc 
ajxloc’ = ajxloc * cos(ajpsi_offset) + ajyloc * sin(ajpsi_offset) 
ajyloc’ = -ajxloc * sin(ajpsi_offset) + ajyloc * cos(ajpsi_offset) 
xloc = (ajxpos + ajx_dp_offset’) * cos(ajpsi_offset’) + (ajy_dp_offset)’*sin(ajpsi_offset’) 
yloc = (ajxpos + ajx_dp_offset’) * -sin(ajpsi_offset’) + (ajy_dp_offset)’*cos(ajpsi_offset’) 
hloc = ajh_dp_offset + ajtch – ajxpos * tan (ajglide) 

Table 3.4.2 State Variable Transformations With Snap 
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The variables introduced above (ajglide, ajtch, osglide, and ostch) are the glideslope angles and 
threshold crossing heights that define the glidepaths that the aircraft are snapped to.  These 
variables are described further in the following section where the relevance of approach data to 
the AILS algorithm is discussed. 

3.5 Use of Approach Data to Perform Conversion to AILS Coordinates 

AILS is confined to a parallel runway approach scenario.  Approach data is therefore a vital and 
integral part of the AILS algorithm.  This is especially true since AILS performs “snapping” to 
glide-slopes and localizers which requires precise knowledge of where the runways and 
approaches are. 

Depending on the specific implementation of AILS, the coordinate transformation from 
latitude, longitude, and altitude to the local runway coordinate frame requires knowledge of the 
local runway and approach.   The software that performed these conversions for the flight tests 
used the convention that was defined according to conventions adopted by Honeywell’s 
SLS/GNSSU systems.   

Figure 3.5.1 shows the convention adopted by Honeywell’s GNSSUs to define a particular 
approach.   The variables used in this convention are equivalent to the key variables used by 
AILS as it refers to the approach geometry.   

The Alerting Path Length (APL), also known as the AILS Path Length, is defined as a linear 
distance from the runway datum point.  When the aircraft is within this distance from the datum 
point, the AILS algorithm may be turned on.  The significance of the APL is that outside of the 
APL, aircraft are required to maintain 1000 ft vertical separation, whereas once the APL is 
entered, aircraft may begin to lose the vertical separation. The APL is a system design 
parameter which typically ranges from 10 to 24 nautical miles, however the selected precision 
approach system should be a strong determining factor.  The APL is discussed further in 
sections 6 and  6.9 where other criteria for enabling AILS protection is discussed. 
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Figure 3.5.1 Key Approach Parameters 

Table 3.5.1 below correlates some of the data used to define approaches by the Honeywell SLS 
format to the internal variables used by AILS. 

 

AILS Variable Description Relationship to external approach info 

osglide own ship glide path angle osglide = gamma (glide path angle) for own 
ship.  Positive as shown in Figure 3.5.1.  3 
degrees is standard. 

ajglide adjacent ship glide path 
angle 

ajglide = gamma (glide path angle) for adjacent 
ship.  Positive as shown in Figure 3.5.1.  3 
degrees is standard. 

ostch altitude at which the glide 
path crosses over the 
datum point for the own 
ship 

ostch = TCH (Threshold crossing height) for 
the own ship approach 

ajtch altitude at which the glide 
path crosses over the 
datum point for the

ajtch = TCH (Threshold crossing height) for 
the adjacent ship approach 

DP
GPIP
SEP
TCP
TCH
γ
ψ
APL
∆

Datum Point
Glidepath Intercept Point
Stop End Point
Threshold Crossing Point
Threshold Crossing Height
Glideslope Angle
Glidepath Heading
Alerting Path Length
Runway Slew Angle
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 Alerting

Side View

GPIP SEPDP

TCH

TCP

Glidepath

γAPL

Top View

ψ

DP, TCP

GPIP

SEP

North

Glidepath

Start of
 Alerting

APL

Runway Threshold

Runway
∆
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AILS Variable Description Relationship to external approach info 

datum point for the 
adjacent ship. 

ajx_dp_offset x offset of adjacent ship 
datum point from own ship 
datum point in own ship 
coordinates. 

relative position of adjacent ship datum point 
(DP) to own ship datum point (DP). 

ajy_dp_offset y offset of adjacent ship 
datum point from own ship 
datum point in own ship 
coordinates. 

relative position of adjacent ship datum point 
(DP) to own ship datum point (DP). 

ajh_dp_offset altitude offset of adjacent 
ship datum point from own 
ship datum point in own 
ship coordinates. 

relative position of adjacent ship datum point 
(DP) to own ship datum point (DP). 

ajx_dp_offset’ x offset of adjacent ship 
datum point from own ship 
datum point in adjacent 
ship coordinates. 

relative position of adjacent ship datum point 
to own ship datum point (DP). 

ajy_dp_offset’ y offset of adjacent ship 
datum point from own ship 
datum point in adjacent 
ship coordinates. 

relative position of adjacent ship datum point 
to own ship datum point (DP). 

ajh_dp_offset’ altitude offset of adjacent 
ship datum point from own 
ship datum point in own 
ship coordinates. 

relative position of adjacent ship datum point 
(DP) to own ship datum point (DP). 

ajpsi_offset 

ajpsi_offset’ 

angle offset of adjacent 
ship approach heading 
relative to own ship 
approach heading. 

determined by the own ship and adjacent ship 
approach paths.  These approach paths are 
determined by the respective datum points 
(DP)and their corresponding stop end points 
(SEP) 

Table 3.5.1 Definition Of Key AILS Approach Related Parameters 

For these approach parameters, the adjacent ship specific variables marked as “prime” variables 
(ajx_dp_offset’, ajsi_offset’ etc), are computed internally by AILS.  Detailed knowledge of 
these prime variables is NOT required.  The implementers are required to know how to 
compute and specify the normal own ship non-“prime” parameters which need to be supplied to 
the AILS algorithm.  Section 5.1.1 further describes input parameter requirements. 
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4 AILS Top Level Description with Flow Charts 

This section first gives a brief top level description of how AILS performs its alert and threat 
determinations.  Then, flowcharts schematically depict the main functional blocks that carry out 
the AILS algorithm. 

4.1 AILS Top Level Description 

AILS checks two main scenarios: 1) The adjacent ship as intruder and the own ship as evader;  
and 2) The own ship as intruder and the adjacent ship as the evader. Also, depending on certain 
flags passed to the algorithm which determine the aircraft’s on-approach/off-approach status, the 
evader or intruder may be snapped as necessary. In each scenario, the intruders states are 
projected forward a designated period of time. The intruder’s vertical profile is checked against 
the evader’s vertical profile to determine the times that the intruder is inside of the evader’s 
vertical protected region. 

The intruder’s horizontal states are also projected forward.  If the intruder is turning, at each 
specified interval of the turn, AILS assumes that the intruder levels out of the turn and continues 
straight in the current direction (AILS fan).   The solution of a quadratic equation determines the 
times at which the intruder enters and exits the evaders protected elliptical zone.  These 
horizontal entry and exit times are compared against the vertical entry and exit times to check if 
the intruder is ever inside the evader’s protected zone within the period of evaluation.   

These checks are performed for both the caution and the warning alert levels. The appropriate 
alerts are issued by flipping appropriate bits in a status vector. 

4.2 AILS Algorithm Structure and Flow Charts 

This section portrays the basic functional blocks of the current AILS algorithm.  Flowcharts are 
presented, but they do not provide a complete description of the AILS algorithm.  Instead their 
intent is to aid the reader in understanding of the algorithm structure.  For a complete and 
comprehensive algorithm description, refer to the pseudo-code section of this document.  

Table 4.2.1 below outlines the major functional blocks of AILS.  The flowcharts are presented in 
a top down fashion starting with Larcalert_full at the top. 

Larcalert_Full (Figure 4.2.1) is the top level routine which executes the AILS algorithm.  One 
major functional block of Larcalert_Full is the ilook scenario setup block (Figure 4.2.2). This is 
responsible for staging the roles of the own ship and the adjacent ship as intruders and evaders.  
For each role, appropriate variables related to aircraft states and alerting are defined.  The 
ilooks/scenarios block also calls the Chkvert_full routine (Figure 4.2.3) which performs the 
vertical scenario check of the intruder against the evader’s protected zone. 

Once the scenario/ilook blocks are complete, the Larcalert_Full executive will sequentially 
perform the forward projections and fan of one aircraft against the other.  The function 
Chktrack_full (Figure 4.2.4) will be invoked to check for potential intrusions for each tangent 
track of the fan, while the function Chkrange_full (Figure 4.2.6) will check for any instant 
intruder-in-evader-ellipse scenarios.  Chktrack_Full answers the question: “Will the intruder be 
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in the evader’s elliptical zone at any time of this current tangent track?”, whereas the 
Chkrange_full answers the question “Is the intruder in the evader’s elliptical zone right now?” 

If Chkrange_Full or Chktrack_Full detect any intrusions, they will raise the appropriate alerting 
flags that are returned to the outside world through Larcalert_Full. 

 

AILS Routine or 
Functional Block 

Function Flowchart 

Larc_alert_full Main AILS executive routine.  Sets up variables and 
alerting parameters.  Sequences through intrusion 
scenarios;   Calls vertical determination routines; 
Performs AILS forward projections and fans; calls 
Chktrack_full and Chkrange_full routines which 
evaluate threats. 

Figure 4.2.1 

ilooks block/ 

scenario setup 

 

This is a major sub-block of larc_alert full.  This block 
sets the stage for the alert checks.  It sets states 
information, alerting parameters, as well as calls 
Chkvert_full to assess the vertical scenarios. 

Figure 4.2.2 

Chkvert_full Assesses vertical situation.  Checks to see when 
intruder aircraft is in the evader’s vertical alert 
threshold. 

Figure 4.2.3 

Chktrack_full Performs tangent track check for current time to end of 
current tangent track to see if the intruder will be in the 
evader’s protected ellipse at any time. 

Figure 4.2.4 

Figure 4.2.5 

Chkrange_full Performs instantaneous check to see if the intruder is in 
the evader’s horizontal ellipse thresholds. 

Figure 4.2.6 

Table 4.2.1 AILS Major Functional Blocks and Routines 
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4.2.1 Larcalert_full Flowchart 

Loop over two scenarios (ilook)

Determine frequency of tangent tracks

Predict position of evader A/C

Loop over time

Predict intruder position on turn arc

Is it
time for
a tangent

track?

Call CHKRANGE
(        )

Call CHKTRACK
(             )

Yes

Can
we exit the

loop?

ilook = 2?

No

NoYes

No

For each scenario perform setup:
•Set appropriate ac states information.
•Set alerting parameters
•Determine vertical situation (get entry and exit times)

See expanded flowchart for this box in

•Apply track rate dead band.
•Compute turn radius
•Set intruder track angle and turn rate to proper coordinates

Initialize all alerting states to FALSE. Define sines  & cosines of runway offset angles

Begin Larcalert_full

End of Larcalert_Full
 

 

Figure 4.2.1 Larcalert_full Flow Chart 

 

Figure 4.2.6 Figure 4.2.4 

Figure 4.2.2 
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4.2.2 Scenario Setup (ilook blocks) Flowchart 

 

Begin sub diagram from Larcalert _Full flowhart :
Box corresponding to scenario setup.

Check ilook scenario
ilook = 1 ilook = 2

Set own ship’s actual states as
the intruder states

Set adjacent ship’s actual states as the
intruder states

Compute unsnapped evader positions
using adjacent ship as evader

Set evader groundspeed  to adjacent ship

Define coordinate transformations  for
reference origin at own ship threshold.
(ajx_dp_offset_prime...)

Evaluate vertical scenario.  Obtain entry and
exit times for vertical alert zone intrusion (                       )

Perform escape zone/protected zone check.
(defeatable by selecting appropriate parameters)

Select appropriate alerting ranges and times

Compute sines and cosines of working selected evader track

Set evader x,y,alt, alt_rate,
and track to adjacent ship’s
corresponding unsnapped
states

Perform snap?

Snap evader states
to glide slope and
localizer of the
adjacent ship

Compute unsnapped evader positions
using own ship as evader

Set evader groundspeed to own ship

Define coordinate transformations  for
reference origin at adjacent ship threshold.
(ajx_dp_offset….)

Evaluate vertical scenario.  Obtain entry and
exit times for vertical alert zone intrusion (                          )

Perform escape zone/protected zone check.
(defeatable by selecting appropriate parameters)

Select appropriate alerting ranges and times

Compute sines and cosines of working selected evader track

Set evader x,y,alt, alt_rate,
and track to own ship’s
corresponding unsnapped
states

Perform snap?

Snap evader states
to glide slope and
localizer of the
own ship

End of scenario setup subdiagram

yesno yesno

 

Figure 4.2.2 Scenario Setup (ilook blocks) Flowchart 

Figure 4.2.3 Figure 4.2.3 
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4.2.3 Chkvert_full Flowchart 

Figure 4.2.3 Chkvert_full Flowchart 

Subroutine Chkvert_full

End of subroutine chkvert_full

compute ceiling and floor thresholds above
and below the evader

compute vertical separation rate between
intruder and evader

is intruder
above ceiling ?
below floor ?

or neither?

is intruder
 climbing ?

is intruder
descending?

is intruder
climbing or

descending ?

set t_enter_vert to infinity
set t_exit_vert_to negative infinity

recompute  t_enter_vertrecompute  t_enter_vert set t_enter_ vert = 0

recompute t_exit_vertrecompute  t_exit_vert

set t_exit_vert = infinity

above
ceiling

below
floor

neither

no

yes yes

no

climbing descending

neither
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4.2.4 Chktrack_full Flowchart 

 

Begin Chktrack _full

Declare appropriate alert

Compute elliptical alerting distance
squared terms

Compute relative range and range rate

Are
relative distances

constant
?

Is there a
 caution or warning

ellipse intrusion
?

yes yes

Return

no

End Chktrack _full

 Determine alert zone breach
for caution parameters:

      See  subdiagram  in

Determine alert zone breach
for warning parameters:

See subdiagram  in

 

Figure 4.2.4 Chktrack_full Flowchart 

Figure 4.2.5 

Figure 4.2.5 



 
 

28

 

4.2.5 Chktrack_full Subdiagram Flowchart 

Figure 4.2.5 Subdiagram Chktrack_full flow chart 

Compute c and d quadratic 
equation terms  d = b**2 - 4*a*c

Compute time band
Compute t_enter_horizontal
Compute t_exit_horizontal

Declare alert

Compute halfway time point between
ellipse entry and exit  (tau)

Compute a and b quadratic equation
terms

Compute time at which we will no
longer check for threshold breach

t_end_check

D <= -Vertex Threshold ?
(Intruder never breaches
horizontal threshold ?)

D <= Vertex Threshold ?
(Intruder intersects horzontal

threshold at vertex ?)

Tau < t_enter_vert
and

Tau < t_end check
?

t_exit_hor > t_enter_vert and
t_enter_hor < t_end_check and
t_enter_vert < t_end_check and

t_exit_hor > tpred
t_exit_vert > tpred

?

yes

no

yes no

yes

yes

no

no

End of subdiagram of chktrack_full

Subdiagram of Chktrack_full:  Determination of alert zone breach
for both caution and warning alert levels
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4.2.6 Chkrange_full Flowchart 

Figure 4.2.6 Chkrange_full flow chart 

 

Subdiagram of Chkrange_full

compute ellipse_check_caut
(sum squared terms and cross

terms for caution ellipse)

compute ellipse_check_warn
(sum squared terms and cross

terms for warning ellipse)

Compute squared terms and cross terms for 
determination of intruder inside

ellipse

Check for caution alert:
ellipse_check_caut <= e4c and
t_enter_vert_caut <= tpred and

t_exit_vert_caut >= tpred
?

End of subdiagram of chrange_full

Check for warning alert:
ellipse_check_warning <= e4w and

t_enter_vert_warn <= tpred and
t_exit_vert_warn >= tpred

?

declare alert

no

no

yes

yes
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5 AILS Data and Pseudo Code Descriptions 

This section describes the AILS algorithm in detail using a pseudo-code syntax that looks 
similar to “C”.  The pseudo-code is described in sections that correspond to modules of 
software.  Each section describes the variables that are input, output, and internal to that 
section, as well as the pseudo-code that implements that module.  Section 5.1 also describes 
some data that is common to all of the modules. 

Some of the conventions used in the pseudo-code are as follows: 

=   variable assignment 
==    equality test   
&&    logical AND 
||        logical OR 
/*  text  */ comments 
*variable use pointer to variable 
&variable get pointer to variable 

 
It is recommended that variables defined in the Input/Output  Parameters DescriptionTables be 
coded up as arguments and NOT global variables.  The only global variables coded should be 
constants or literals defined in Table 5.1.2. 

5.1 Larcalert_full and Top Level AILS Descriptions 

5.1.1 Larcalert_full/AILS Input/Output Parameters Description 

Following is the data dictionary for variables being passed in and out of the larc_alert_full 
algorithm.  All variables are input variables with the exception of the status array variable 
which is an input/output variable. 

 
Variable Type Units Description Coordinate 

System 

osxpos double feet Own ship downrange position relative to own 
ship datum point. 

os runway  

osypos double feet Own ship cross-range position relative to own 
ship datum point. 

os runway 

osgs double  ft/sec Own ship ground speed. absolute 

ostrk double rad Own ship track angle relative to own ship 
localizer/approach path centerline. 

os runway 

ostrkdot double  rad/se
c 

Own ship track angle rate relative to own ship 
localizer/approach path centerline. 

os runway 

osh double ft Own ship altitude above own ship runway 
datum point (in runway coordinates). 

os runway 
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Variable Type Units Description Coordinate 
System 

oshdot double  ft/sec Own ship altitude rate in runway coordinates 
relative to the own ship datum point. 

os runway 

osglide double rad Own ship glide path angle.    Defined by 
approach information (typically corresponds to 
approximately + 3 degrees for standard 
approach) 

see Table 
3.5.1 

ostch double  ft Own ship threshold crossing height. see Table 
3.5.1 

ajxpos double feet Adjacent ship downrange position relative to 
adjacent ship runway threshold 

aj runway 

ajypos double feet Adjacent ship cross-range position relative to 
adjacent ship runway threshold 

aj runway 

ajgs double  ft/sec Adjacent ship ground speed. absolute 

ajtrk double rad Adjacent ship track angle relative to the 
adjacent ship localizer/approach path centerline. 

aj runway 

ajtrkdot double  rad/se
c 

Adjacent ship track angle rate relative to the 
adjacent ship localizer/approach path centerline. 

aj runway 

ajh double ft Adjacent ship altitude above adjacent ship 
runway datum point (in runway coordinates). 

aj runway 

ajhdot double  ft/sec Adjacent ship altitude rate in runway 
coordinates relative to the adjacent ship datum 
point. 

aj runway 

ajglide double rad Adjacent ship glide path angle.    Defined by 
approach information (typically corresponds to 
approximately + 3 degrees for standard 
approach) 

see Table 
3.5.1 

ajtch double  ft Adjacent ship threshold crossing height. see Table 
3.5.1 

ajx_dp_off
set 

double ft x offset of aj runway datum point from os 
runway datum point (in os coordinate system) 

see Table 
3.2.1 

ajy_dp_ 
offset 

double  ft y offset of aj runway datum point from os 
runway datum point (in os coordinate system) 

see Table 
3.2.1 

ajh_dp_ 
offset 

double  ft z offset of aj runway datum point from os 
runway datum point (in os coordinate system) 

see Table 
3.2.1 
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Variable Type Units Description Coordinate 
System 

ajpsi_ 
offset 

double  rad Angle offset of adjacent runway approach path 
from the own runway approach path 

see Table 
3.2.1 

aldst_e[10] double ft Elliptical alert range threshold vector  

alvup[5] double ft Vertical alert range threshold above evader 
vector. 

 

alvdown[5] double ft Vertical alert range threshold below evader 
vector 

 

altime[5] double ft  Alert time threshold vector  

protected_ 
esc[5] 

double ft Protected escape zone vector parameters  

trkratedb double rad/se
c 

Track rate deadband  

turntime double sec Time duration with which to allow AILS to 
project the current forward turn. 

 

tstep double sec Time step search granularity for AILS fan.  

status[100] int  Vector containing alerting routine status as well 
as other miscellaneous information. 

 

os_snap_ 
flag 

int  Flag indicating that AILS should perform snap 
of the own ship to the own ship’s approach 
path.  If TRUE, snap; If FALSE, use actual 
states of the own ship when checking for the 
adjacent ship intrusion on the own ship.   

 

aj_snap_ 
flag 

int  Flag indicating that AILS should perform snap 
of the adjacent ship to the adjacent  ship’s 
approach path.  If TRUE, snap; If FALSE, use 
actual states for the adjacent ship when 
checking for the own ship intrusion on the 
adjacent ship. 

 

Table 5.1.1 Larcalert_full/AILS Input Output Variables Data Dictionary 

 

5.1.2 AILS Literals and Indices  

The following class of variables are indices or literals that are used to access array elements 
within the AILS algorithm.   In a “C” language implementation they would be defined through 
the use of the “C” “#define” statements.  In Ada or other languages they could be either 
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integers or enumerated types.  In our application they are used to show how to access specific 
array data elements. Those elements are subsequently defined in the next data dictionary 
section. 

 

INDEX/ LITERAL Definition 

LEVEL_1 1 

LEVEL_2 2 

LEVEL_3 3 

LEVEL_4 4 

PROTECTED_ESC_LEV_3 5 

PROTECTED_ESC_LEV_4 6 

  

LEVEL_1_DOWNRANGE 1 

LEVEL_1_CROSSRANGE 2 

LEVEL_2_DOWNRANGE 3 

LEVEL_2_CROSSRANGE 4 

LEVEL_3_DOWNRANGE 5 

LEVEL_3_CROSSRANGE 6 

LEVEL_4_DOWNRANGE 7 

LEVEL_4_CROSSRANGE 8 

  

LATERAL 0 

AHEAD 1 

BEHIND 2 

ABOVE 3 

BELOW 4 

Table 5.1.2 AILS Indices and Literals Specifcations 

5.1.3 AILS Array Element Descriptions 

The following data dictionary describes the individual elements of the special arrays used to 
handle AILS data. 
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variable(element) Description Definition/Notes 

status[LEVEL_1] level 1 alert status: ownship 
ship intruding at the adjacdent 
ship: caution alert. 

0 =  no alert 

1 = alert tripped 

status[LEVEL_2] level 2 alert status: adjacent 
ship intruding at the own ship: 
caution alert. 

0 =  no alert  

1 = alert tripped 

status[LEVEL_3] level 3 alert status: own  ship 
intruding at the adjacent ship: 
warning alert. 

0 = no alert 

 1 = alert tripped 

status[LEVEL_4] level 4 alert status: adjacent 
ship intruding at the own ship: 
warning alert. 

0 =  no alert 

1 = alert tripped 

status[PROTECTED_ESC_ LEV_3] protected escape zone alert 
status.   If TRUE, the ownship 
is in the adjacent ship’s 
protected escape zone 

0 =  no alert 

1 = alert tripped 

status[PROTECTED_ESC_ LEV_4] protected escape zone alert 
status.   If TRUE, the adjacent 
ship is in the own ship’s 
protected escape zone 

0 = no alert 

1 = alert tripped 

   

aldst_e[LEVEL_1_DOWNRANGE] elliptical downrange alerting 
parameter for level 1 

feet 

aldst_e[LEVEL_1_CROSSRANGE] elliptical cross-range alerting 
parameter for level 1 

feet 

aldst_e[LEVEL_2_DOWNRANGE] elliptical downrange alerting 
parameter for level 2 

feet 

aldst_e[LEVEL_2_CROSSRANGE] elliptical cross-range alerting 
parameter for level 2 

feet 

aldst_e[LEVEL_3_DOWNRANGE] elliptical downrange alerting 
parameter for level 3 

feet 

aldst_e[LEVEL_3_CROSSRANGE] elliptical cross-range alerting 
parameter for level 3 

feet 

aldst_e[LEVEL_4_DOWNRANGE] elliptical downrange alerting 
parameter for level 4

feet 
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variable(element) Description Definition/Notes 

parameter for level 4 

aldst_e[LEVEL_4_CROSSRANGE] elliptical cross-range alerting 
parameter for level 4 

feet 

   

alvup[LEVEL_1] vertical alerting threshold 
distance above for level 1 

feet 

alvup[LEVEL_2] vertical alerting threshold 
distance above for level 2 

feet 

alvup[LEVEL_3] vertical alerting threshold 
distance above for level 3 

feet 

alvup[LEVEL_4] vertical alerting threshold 
distance above for level 4 

feet 

alvdown[LEVEL_1] vertical alerting threshold 
distance below for level 1 

feet 

alvdown[LEVEL_2] vertical alerting threshold 
distance below for level 2 

feet 

alvdown[LEVEL_3] vertical alerting threshold 
distance below for level 3 

feet 

alvdown[LEVEL_4] vertical alerting threshold 
distance below for level 4 

feet 

   

altime[LEVEL_1] alert time threshold for level 1 sec 

altime[LEVEL_2] alert time threshold for level 2 sec 

altime[LEVEL_3] alert time threshold for level 3 sec 

altime[LEVEL_4] alert time threshold for level 4 sec 

   

protected_esc[LATERAL] lateral protected escape zone ft 

protected_esc[AHEAD] ahead protected escape zone ft 

protected_esc[BEHIND] behind protected escape zone ft 

protected_esc[ABOVE] above protected escape zone ft 

protected_esc[BELOW] below protected escape zone ft 
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Table 5.1.3 AILS Array Element Descriptions 

 

5.1.4 Larcalert_full Local Internal Variables Data Dictionary 

 

Variable Type Units Description Coordinate 
System 

actrk double rad heading of the pursuer aircraft intruder 

arcrad double  rad turn radius of pursuer aircraft at the current 
bank angle or turn rate. 

 

dttrk double  sec time between tangent tracks  

gs double ft/sec ground speed of pursuer aircraft  

gsloc double sec ground speed of evader aircraft  

idtrk int  number of time steps between tangent tracks  

maxstep int  maximum number of time steps before the 
maximum alert time altime is exceeded. 

 

tantrk double rad heading of tangent track pursuer 

tpred double sec time allotted for forward prediction of current 
states 

 

trk double rad heading of pursuer aircraft pursuer 

trkrate double rad/se
c 

turn rate of pursuer aircraft pursuer 

trkdot double rad/se
c 

= -trkrate  

xloc double feet x position of evader aircraft pursuer 

yloc double feet y position of evader aircraft pursuer 

trkloc double rad track angle of evader aircraft pursuer 

zloc double ft altitude of pursuer airraft pursuer 

zlocdot double ft/sec altitude rate of pursuer aircraft pursuer 

x0 double ft x position of pursuer aircraft pursuer 

y0 double ft y position of pursuer aircraft pursuer 

xtrk double ft x position along arc, start of tangent track pursuer 
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Variable Type Units Description Coordinate 
System 

ytrk double  ft y position along alrc, start of tangent track pursuer 

COStrk double ft cosine of track angle of pursuer aircraft  

SINtrk double ft sine of  track angle of the pursuer aircraft   

t_enter_vert_ 
caut 

double sec time at which the pursuer will enter the 
evader’s vertical protected threshold: caution 
level 

 

t_enter_vert_ 
warn 

double sec time at which the pursuer will enter the 
evader’s vertical protected threshold: warning 
level 

 

t_exit_vert_ 
caut 

double sec time at which the pursuer will exit the 
evader’s vertical protected threshold: caution 
level 

 

t_exit_vert_ 
warn 

double sec time at which the pursuer will exit the 
evader’s vertical protected threshold: warning 
level 

 

xlocpos[] double ft array of x positions of evader aircraft  

ylocpos[] double ft  array of y positions of evader aircraft  

z0 double ft altitude of pursuer aircraft pursuer 

z0dot double ft/sec altitude rate of pursuer aircraft pursuer 

ctime double sec states project-ahead time for determining 
caution alert 

 

wtime double  sec states project-ahead time for determining 
warning alert 

 

vflag[] int  flag indicating potential for vertical threshold 
puncture.  This flag is an output of the 
chkvert routine and is not currently used for 
anything 

 

ilook int  program loop control flag 

ilook = 1:  own ship is the pursuer 

ilook = 2: adjacent ship is pursuer 

 

cbit int  indice used to indicate access status to caution 
array 
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Variable Type Units Description Coordinate 
System 

wbit int  indice used to indicate access status to 
warning array 

 

i int  loop index  

iarc int  loop index (used during fan arc)  

trkrate_adjus
ted 

double rad adjusted track rate  

ajx_dp_offse
t_prime 

double  ft ownship datum point x offset in the adjacent 
ship coordinate frame 

adjacent 
ship 

ajy_dp_offse
t_prime 

double  ft ownship datum point y offset in the adjacent 
ship coordinate frame 

adjacent 
ship 

sin_ajpsi_off
set 

double rad sin of adjacent ship runway (approach path)  
offset angle to own ship runway 

 

cos_ajpsi_off
set 

double rad cos of adjacent ship runway (approach path)  
offset angle to own ship runway 

 

ajpsi_offset_
prime 

double rad negative of adjacent ship runway (approach 
path) offset to own ship approach path 

 

sin_ajpsi_off
set_prime 

double  rad sin of ajpsi_offset_prime  

cos_ajpsi_off
set_prime 

double rad  cos of ajpsi_offset_prime  

xloc_unsnap
ped 

double ft unsnapped x position of evader aircraft intruder 

yloc_unsnap
ped 

double ft unsnapped y position of evader aircraft intruder 

zloc_unsnap
ped 

double  ft unsnapped z position of evader aircraft intruder 

sin_trkloc double  sin of evader track angle: sin(trkloc)  

cos_trkloc double  cos of evader track angle : cos(trkloc)  

e1c double  e1 coefficient for rotated caution ellipse  

e2c double  e2 coefficient for rotated caution ellipse  

e3c double  e3 coefficient for rotated caution ellipse  
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Variable Type Units Description Coordinate 
System 

e4c double  e4 coefficient for rotated caution ellipse  

e1w double  e1 coefficient for rotated warning ellipse  

e2w double  e2 coefficient for rotated warning ellipse  

e3w double  e3 coefficient for rotated warning ellipse  

e4w double  e4 coefficient for rotated warning ellipse  

sin_trkloc_sq
rd 

double  sin of evader track squared  

cos_trkloc_s
qrd 

double  cos of evader track squared  

cdist_ 
downrange_ 
sqrd 

double  caution downrange ellipse parameter squared  

wdist_ 
downrange_ 
sqrd 

double  warning downrange ellipse parameter squared  

cdist_ 
crossrrange_ 
sqrd 

double  caution cross-range ellipse parameter squared  

wdist_ 
crossrrange_ 
sqrd 

double  warning cross-range ellipse parameter squared  

Table 5.1.4 AILS Local Variable Data Dictionary 

 

 

5.1.5 Larcalert_full (AILS Executive) Algorithm Pseudo Code 

 
Begin Larcalert_Full 
 
/* Reset alert strings and flags */ 
status[LEVEL_1] = FALSE                                                 
status[LEVEL_2] = FALSE  
status[LEVEL_3] = FALSE                                                                  
status[LEVEL_4] = FALSE  
status[PROTECTED_ESC_LEV_3] = FALSE  
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status[PROTECTED_ESC_LEV_4] = FALSE  
 
/* define sines and cosines of runway offset rotation angles */ 
sin_ajpsi_offset = sin(ajpsi_offset)  
cos_ajpsi_offset = cos(ajpsi_offset)  
ajpsi_offset_prime = -ajpsi_offset                                                       
sin_ajpsi_offset_prime = -sin_ajpsi_offset    
cos_ajpsi_offset_prime = cos_ajpsi_offset     
 
/* loop over the two scenarios, 1 = Ownship intruder 2 = Adjacent ship intruder */ 
for (ilook = 1 ; ilook <=2 ; ilook++) { 
    if (ilook == 1) { 
          /* On ilook = 1 first-pass, initialize for OS is intruder AJ is evader */ 
          /* Set intruder parameters.  Ownship is intruder */ 
          actrk  = ostrk 
          trkrate = ostrkdot                                                              
          x0     = osxpos 
          y0     = osypos 
          h0     = oshpos  
          gs     = osgs 
          h0dot  = oshdot                                                           
 
          /* perform evader coordinate transformations.  Get evader parameters */ 
          /* In this pass, evader positions are based on adjacent ship */ 
          gsloc  = ajgs 
 
          ajx_dp_offset_prime = cos_ajpsi_offset * ajx_dp_offset +                        
                                sin_ajpsi_offset * ajy_dp_offset                         
          ajy_dp_offset_prime = -sin_ajpsi_offset * ajx_dp_offset +                       
                                cos_ajpsi_offset * ajy_dp_offset                         
 
 
          /* Compute unsnapped evader positions. Perform regardless of snapping */ 
          /*  because we need these values to evaluate protected zones          */ 
          xloc_unsnapped = cos_ajpsi_offset_prime*(ajxpos+ajx_dp_offset_prime) +          
                 sin_ajpsi_offset_prime*(ajypos + ajy_dp_offset_prime)                   
          yloc_unsnapped = -sin_ajpsi_offset_prime*(ajxpos+ajx_dp_offset_prime)+          
                  cos_ajpsi_offset_prime*(ajypos + ajy_dp_offset_prime)                  
          hloc_unsnapped = ajhpos + ajh_dp_offset  
 
          /* logic whether or not to snap evader */  
          if (aj_snap_flag == FALSE) { /* no snap to glidepath and localizer */      
            hloc   = ajhpos + ajh_dp_offset                                                 
            hlocdot= ajhdot                                                              
            trkloc = ajtrk + ajpsi_offset_prime                                          
            xloc = xloc_unsnapped                                                       
            yloc = yloc_unsnapped                                                        
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          } else   {                                                                      
            /* snap to glidespath and localizer */                                        
            /* assume threshold location 1000 ft from gpip */                             
            hloc   =  ajh_dp_offset + ajtch - ajxpos * tan(ajglide)                      
            hlocdot= -gsloc * tan(ajglide)                                               
            trkloc = ajpsi_offset_prime                                                  
            xloc = cos_ajpsi_offset_prime*(ajxpos+ajx_dp_offset_prime) +                  
                 sin_ajpsi_offset_prime*ajy_dp_offset_prime                              
            yloc = -sin_ajpsi_offset_prime*(ajxpos+ajx_dp_offset_prime)+                  
                  cos_ajpsi_offset_prime*ajy_dp_offset_prime                             
          }                                                                               
          /* trkloc’s snapped/unsnapped status is dependent on snap_flag */ 
          sin_trkloc = sin(trkloc)                                                       
          cos_trkloc = cos(trkloc)                                                       
          sin_trkloc_sqrd = sin_trkloc * sin_trkloc                                      
          cos_trkloc_sqrd = cos_trkloc * cos_trkloc                                      
 
          /* set elliptical alerting parameters */ 
          cdist_downrange_sqrd = aldst_e[LEVEL_1_DOWNRANGE] *  

aldst_e[LEVEL_1_DOWNRANGE]    
          cdist_crossrange_sqrd = aldst_e[LEVEL_1_CROSSRANGE] *  
    aldst_e[LEVEL_1_CROSSRANGE] 
          wdist_downrange_sqrd = aldst_e[LEVEL_3_DOWNRANGE] *  

aldst_e[LEVEL_3_DOWNRANGE]    
          wdist_crossrange_sqrd = aldst_e[LEVEL_3_CROSSRANGE] *  

aldst_e[LEVEL_3_CROSSRANGE] 
         
          e4c = cdist_downrange_sqrd * cdist_crossrange_sqrd                             
          e4w = wdist_downrange_sqrd * wdist_crossrange_sqrd                            
 
          e1c = (cdist_downrange_sqrd*sin_trkloc_sqrd + cdist_crossrange_sqrd*cos_trkloc_sqrd)  
          e2c = (cdist_downrange_sqrd-cdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc        
          e3c = (cdist_downrange_sqrd*cos_trkloc_sqrd + cdist_crossrange_sqrd*sin_trkloc_sqrd)  
 
          e1w = (wdist_downrange_sqrd*sin_trkloc_sqrd +  

wdist_crossrange_sqrd*cos_trkloc_sqrd)  
          e2w = (wdist_downrange_sqrd-wdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc          
          e3w = (wdist_downrange_sqrd*cos_trkloc_sqrd +  

wdist_crossrange_sqrd*sin_trkloc_sqrd) 
 
          /* set alerting times */ 
          ctime  = altime[LEVEL_1] 
          wtime  = altime[LEVEL_3] 
          cbit   = LEVEL_1 
          wbit   = LEVEL_3 
 
          /* Check for esc zone  violation of adjacent ship */                            
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          /* Perform this here because  ownship coordinate system is available */         
           if  ((xloc_unsnapped < osxpos + protected_esc[AHEAD]) &&                      
                (xloc_unsnapped > osxpos - protected_esc[BEHIND]) &&                     
                (hloc_unsnapped < oshpos + protected_esc[ABOVE])  &&                         
                (hloc_unsnapped > oshpos - protected_esc[BELOW])) {                          
 
              if (ajy_dp_offset > 0.0) {  /* The adjacent ship runway is on the right */  
                   if (yloc_unsnapped < (osypos+protected_esc[LATERAL])) {                
                       status[LEVEL_4] = TRUE                                            
                       status[PROTECTED_ESC_LEV_4] = TRUE                                
                   } 
              } else if (ajy_dp_offset < 0.0) { /*The adjacent ship runway is on the left*/  
                   if (yloc_unsnapped > (osypos-protected_esc[LATERAL])) {                
                        status[LEVEL_4] = TRUE                                           
                        status[PROTECTED_ESC_LEV_4] = TRUE                               
                   }                                                             
              } 
          } 
 
 
 
          /* Get caution vertical alerting threshold status and times */                  
          chkvert_full(hloc,hlocdot, h0, h0dot, alvup[1], alvdown[1],                     
                  &t_enter_vert_caut, &t_exit_vert_caut, &vflag[1])                      
 
          /* Get warning vertical alerting threshold status and times */                  
          chkvert_full(hloc,hlocdot, h0, h0dot, alvup[3], alvdown[3],                     
                  &t_enter_vert_warn, &t_exit_vert_warn, &vflag[3])                      
     
  } else { 
          /* On ilook = 2, 2nd pass, initialize for AJ is intruder OS is evader */ 
          /* Set intruder parameters */ 
          actrk  = ajtrk 
          trkrate = ajtrkdot                                                             
          x0     = ajxpos 
          y0     = ajypos 
          h0     = ajhpos                                                                   
          gs     = ajgs 
          h0dot  = ajhdot 
 
          /* Perform evader coordinate transformations.  Compute evader parameters */ 
          /* In this pass, use own ship as evader */ 
          gsloc  = osgs 
 
          /* Compute unsnapped evader positions. Perform regardless of snapping */ 
          /*  because we need these values to evaluate protected zones.         */ 
          xloc_unsnapped   = cos_ajpsi_offset * (osxpos-ajx_dp_offset) +                  
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             sin_ajpsi_offset * (osypos-ajy_dp_offset)                                   
          yloc_unsnapped   = -sin_ajpsi_offset * (osxpos-ajx_dp_offset) +                 
             cos_ajpsi_offset * (osypos-ajy_dp_offset)                                   
          hloc_unsnapped = oshpos                                                           
 
          /* logic whether or not to snap evader */  
          if (os_snap_flag == FALSE) { /* no snap to glidepath and localizer */      
            hloc   = oshpos - ajh_dp_offset                                                 
            hlocdot= oshdot                                                             
            trkloc = ostrk + ajpsi_offset 
            xloc = xloc_unsnapped 
            yloc = yloc_unsnapped 
          } else      {                                                                   
            /* snap to glidepath and localizer */                                         
            /* assume threshold location 1000 ft from gpip */                             
            hloc   = -ajh_dp_offset + ostch - osxpos*tan(osglide)                        
            hlocdot= -osgs * tan(osglide)                                               
            trkloc = ajpsi_offset 
            xloc   = cos_ajpsi_offset * (osxpos-ajx_dp_offset) +  
                     sin_ajpsi_offset * (-ajy_dp_offset)                                 
            yloc   = -sin_ajpsi_offset * (osxpos-ajx_dp_offset) +  
                     cos_ajpsi_offset * (-ajy_dp_offset)                                 
          } 
          /* trkloc’s snapped/unsnapped status is dependent on snap_flag */ 
          sin_trkloc = sin(trkloc) 
          cos_trkloc = cos(trkloc) 
          sin_trkloc_sqrd = sin_trkloc * sin_trkloc                                      
          cos_trkloc_sqrd = cos_trkloc * cos_trkloc                                      
 
          /* set elliptical alerting parameters */ 
          cdist_downrange_sqrd = aldst_e[LEVEL_2_DOWNRANGE] *  

aldst_e[LEVEL_2_DOWNRANGE]      
          cdist_crossrange_sqrd = aldst_e[LEVEL_2_CROSSRANGE] *  

aldst_e[LEVEL_2_CROSSRANGE]   
          wdist_downrange_sqrd = aldst_e[LEVEL_4_DOWNRANGE] *  

aldst_e[LEVEL_4_DOWNRANGE]    
          wdist_crossrange_sqrd = aldst_e[LEVEL_4_CROSSRANGE] *  

aldst_e[LEVEL_4_CROSSRANGE]   
 
          e4c = cdist_downrange_sqrd * cdist_crossrange_sqrd                               
          e4w = wdist_downrange_sqrd * wdist_crossrange_sqrd                           
 
          e1c = (cdist_downrange_sqrd*sin_trkloc_sqrd + cdist_crossrange_sqrd*cos_trkloc_sqrd)    
          e2c = (cdist_downrange_sqrd-cdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc            
          e3c = (cdist_downrange_sqrd*cos_trkloc_sqrd + cdist_crossrange_sqrd*sin_trkloc_sqrd)    
 
          e1w = (wdist_downrange_sqrd*sin_trkloc_sqrd +  
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wdist_crossrange_sqrd*cos_trkloc_sqrd)    
          e2w = (wdist_downrange_sqrd-wdist_crossrange_sqrd)*2.0*cos_trkloc*sin_trkloc          
          e3w = (wdist_downrange_sqrd*cos_trkloc_sqrd +  

wdist_crossrange_sqrd*sin_trkloc_sqrd)    
 
          /* set alerting times */ 
          ctime  = altime[LEVEL_2] 
          wtime  = altime[LEVEL_4] 
          cbit   = LEVEL_2 
          wbit   = LEVEL_4 
 
          /* Check for protected_esc  violation of own ship */                            
          /* Perform this here because adjacent ship coordinate system is available */    
           if  ((xloc_unsnapped < ajxpos + protected_esc[AHEAD]) &&                      
                (xloc_unsnapped > ajxpos - protected_esc[BEHIND]) &&                    
                (hloc_unsnapped < ajhpos + protected_esc[ABOVE])  &&                         
                (hloc_unsnapped > ajhpos - protected_esc[BELOW])) {                         
 
              if (ajy_dp_offset > 0.0) {/* The ownship ship runway is on the left */      
                     if (yloc_unsnapped > (ajypos-protected_esc[LATERAL])) {              
                          status[LEVEL_3] = TRUE                                         
                          status[PROTECTED_ESC_LEV_3] = TRUE                             
                     } 
              }  else if (ajy_dp_offset < 0.0) {/*The ownship ship runway is on the right*/  
                     if (yloc_unsnapped < (ajypos+protected_esc[LATERAL])) {             
                       status[LEVEL_3] = TRUE                                           
                       status[PROTECTED_ESC_LEV_3] = TRUE                               
                     }                                                                   
              } 
           } 
 
          /* Get caution alerting threshold status and times */                           
          chkvert_full(hloc,hlocdot, h0, h0dot, alvup[2], alvdown[2],                     
                  &t_enter_vert_caut, &t_exit_vert_caut, &vflag[2])                      
 
          /* Get warning alerting threshold status and times */                           
          chkvert_full(hloc,hlocdot, h0, h0dot, alvup[4], alvdown[4],                     
                  &t_enter_vert_warn, &t_exit_vert_warn, &vflag[4])                      
 
    }  /* End of ilook initialization block */ 
 
            
    /* The following section deals with the intruder turn/turn rate profile */  
    /* Use track rate to determine turn rate */                                    
 
   /* Apply track rate dead band if necessary */                                   
    if (fabs(trkrate) < trkratedb) {                                               
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       /* Bank angle deadband */                                                   
        arcrad  = 10000000000.0                                                   
        trkrate_adjusted = 0.0                                                      
    } else {                                                                       
        trkrate_adjusted = trkrate 
        arcrad = gs/trkrate_adjusted                                                
        arcrad  = fabs(arcrad)                                                    
    } 
 
    /* set intruder track angle and turn rate in "conventional" coordinate system */ 
    trk = -actrk 
    if (trkrate_adjusted != 0.0) trkdot = -trkrate_adjusted 
    if (trkdot < 0.0) trk = trk + PI 
     
    /* Set time interval between prediction of straight tracks tangent to arc. 
        The tracks should be 1.5 to 3.0 degrees apart (trkrate*dttrk) */ 
    if (trkrate_adjusted != 0.0) { 
          if (fabs(trkrate_adjusted) >= 3.0 * DEG_TO_RAD) dttrk = 0.5 
          else if (fabs(trkrate_adjusted) >= 1.5 * DEG_TO_RAD) dttrk = 1.0  
          else if (fabs(trkrate_adjusted) >= 0.75 * DEG_TO_RAD) dttrk = 2.0 
          else dttrk = 4.0 
          idtrk = dttrk/tstep + 0.5   
    } 
    else { 
          idtrk = 999   
    } 
     
    /* Load evader aircraft position array */ 
    maxstep = min(ctime,turntime)/tstep + 0.5                                       
    for (i=0 ; i<=maxstep ; i++) { 
          xlocpos[i] = xloc + i*tstep*gsloc * cos_trkloc 
          ylocpos[i] = yloc + i*tstep*gsloc * sin_trkloc 
    } 
     
    /* Check curved path with tangent tracks.  Set track angle. */ 
    COStrk = cos(trk) 
    SINtrk = sin(trk) 
 
    for (iarc=0 ; iarc<=maxstep ; iarc++) { 
 
                tpred = iarc*tstep 
                xloc  = xlocpos[iarc] 
                yloc  = ylocpos[iarc] 
     
                /* Predict position along arc */ 
                xtrk = x0 + arcrad*(sin(trk+trkdot*tpred) - SINtrk) 
                ytrk = y0 + arcrad*(cos(trk+trkdot*tpred) - COStrk) 
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                /* Check predicted position or tangent track depending on time */ 
                if ( fmod(iarc,idtrk) != 0) { 
                      /* Check predicted position */ 
                      chkrange_full(tpred,xtrk,xloc,ytrk,yloc,e1c,e2c,e3c,e4c, 
                                    e1w,e2w,e3w,e4w, 
                                    ctime,wtime, t_enter_vert_caut, t_enter_vert_warn,  
                                    t_exit_vert_caut, t_exit_vert_warn, cbit,wbit,status) 
                } else { 
                      /* Check tangent track */ 
                      tantrk = actrk + tpred*trkrate_adjusted 
                      chktrack_full(tpred,t_enter_vert_caut,t_enter_vert_warn, 
                               t_exit_vert_caut,t_exit_vert_warn,xloc,yloc,gsloc,trkloc, 
                               xtrk,ytrk,gs,tantrk,e1c,e2c,e3c,e4c,e1w,e2w,e3w,e4w, 
                               ctime,wtime,cbit,wbit,status) 
                }   /* End of if-then-else for fmod(iarc,idtrk != 0) */ 
    }               /* End of for iarc = 0 to maxstep loop */ 
} /* End of ilook = 1 to 2 for loop */ 
    return 
}               /* End of Subroutine Larcalert_full */ 
 

 

 

 

5.2 Subunit Chkvert_full Description 

 
5.2.1 Subunit Chkvert_full Input Parameters 

 

Variable Type Units Description Coordinate 
System 

hloc double feet evader altitude intruder  

hlocdot double ft/sec evader altitude rate intruder 

h0 double feet intruder altitude intruder 

h0dot double ft/sec intruder altitude rate intruder 

alvup double feet vertical alert distance threshold above evader  

alvdown double feet vertical alert distance threshold below evader  

Table 5.2.1 Subunit Chkvert_full Input Parameters 
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5.2.2 Subunit Chkvert_full Output Parameters 

 
Variable Type Units Description Coordinate 

System 

t_enter_vert double feet entry time of intruder into evader’s protected 
vertical zone 

 

t_exit_vert double feet exit time of intruder from evader’s protected 
vertical zone 

 

vflag int int flag indicating that vertical intrusion has 
occurred 

 

Table 5.2.2 Subunit Chkvert_full Output Parameters 

 

5.2.3 Subunit Chkvert_full Local Variables 

Variable Type Units Description Coordinate 
System 

h_ceil_thresh double feet ceiling threshold above evader  

h_floor_thres
h 

double feet floor threshold below evader  

vert_sep_rate int int vertical separation rate between intruder and 
evader. 

 

Table 5.2.3 Subunit Chkvert_full Local Variables 

 

5.2.4 Subunit Chkvert_full Algorithm Pseudo Code 

 
local constant definition: 
    ALT_RATE_DEADBAND = 0.1 

Begin Chkvert_Full 
{ 
*t_enter_vert = 999.0 
*t_exit_vert = -999.0 
 
/* Compute hockey puck ceiling and floor altitudes  */ 
h_ceil_thresh   = hloc + alvup 
h_floor_thresh  = hloc - alvdown 
 
/* Compute vertical separation rate.  */ 
vert_sep_rate = h0dot - hlocdot 
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if (h0 >= h_ceil_thresh) { 
      /* adjacent ship is above the ceiling threshold  */ 
      if (vert_sep_rate >= -ALT_RATE_DEADBAND ){ 
            /* adjacent ship vertical separation constant or increasing */ 
            *vflag = FALSE 
            return 
      } 
      else{ 
            /* adjacent ship vertical separation decreasing */ 
            *t_enter_vert = -(h0 - h_ceil_thresh)/vert_sep_rate 
            *t_exit_vert  = -(h0 - h_floor_thresh)/vert_sep_rate 
      } 
} else if (h0 <= h_floor_thresh){ 
      /* adjacent ship is below the floor threshold  */ 
      if (vert_sep_rate <= ALT_RATE_DEADBAND ){ 
            /* adjacent ship vertical separation constant or increasing */ 
            *vflag = FALSE 
            return 
      } 
      else{ 
            /* adjacent ship vertical separation decreasing */ 
            *t_enter_vert  = (h_floor_thresh - h0)/vert_sep_rate 
            *t_exit_vert   = (h_ceil_thresh - h0)/vert_sep_rate 
      } 
} else{ 
      /* adjacent ship is between the ceiling and floor thresholds  */ 
      *t_enter_vert = 0.0 
      if (vert_sep_rate >= ALT_RATE_DEADBAND){ 
            /* adjacent ship climbing relative to thresholds        */ 
            *t_exit_vert  = (h_ceil_thresh-h0)/vert_sep_rate 
      } 
      else if (vert_sep_rate <= -ALT_RATE_DEADBAND){ 
            /* adjacent ship descending relative to thresholds      */ 
            *t_exit_vert  = -(h0 - h_floor_thresh)/vert_sep_rate 
      } 
      else *t_exit_vert = 1000000.0 /* adjacent ship is relatively level */ 
} 
*vflag = TRUE 
return 
}         /* End of Subroutine Chkvert_full */ 
 

5.3 Subunit Chkrange_full Description 

Called from: Larcalert_full 

Purpose: Check for instantaneous intrusion of the intruder in the evader’s protected alert zone. 
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5.3.1 Subunit Chkrange_full Input Parameters 

 

Variable Type Units Description Coordinate 
System 

tpred double sec time allotted for forward prediction of current 
states. 

 

xtrk double ft x position along arc, start of tangent track pursuer 

ytrk double  ft y position along alrc, start of tangent track pursuer 

xloc double feet x position of evader aircraft pursuer 

yloc double feet y position of evader aircraft pursuer 

e1c double  e1 coefficient for rotated caution ellipse  

e2c double  e2 coefficient for rotated caution ellipse  

e3c double  e3 coefficient for rotated caution ellipse  

e4c double  e4 coefficient for rotated caution ellipse  

e1w double  e1 coefficient for rotated warning ellipse  

e2w double  e2 coefficient for rotated warning ellipse  

e3w double  e3 coefficient for rotated warning ellipse  

e4w double  e4 coefficient for rotated warning ellipse  

ctime double sec states project-ahead time for determining 
caution alert 

 

wtime double  sec states project-ahead time for determining 
warning alert 

 

t_enter_vert
_ caut 

double sec time at which the pursuer will enter the evader’s 
vertical protected threshold: caution level 

 

t_enter_vert
_ warn 

double sec time at which the pursuer will enter the evader’s 
vertical protected threshold: warning level 

 

t_exit_vert_ 
caut 

double sec time at which the pursuer will exit the evader’s 
vertical protected threshold: caution level 

 

t_exit_vert_ 
warn 

double sec time at which the pursuer will exit the evader’s 
vertical protected threshold: warning level 

 

cbit int  indice used to indicate access status to caution 
array 
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Variable Type Units Description Coordinate 
System 

wbit int  indice used to indicate access status to warning 
array 

 

Table 5.3.1 Subunit Chkrange_Full Input Parameters 

5.3.2 Subunit Chkrange_full Output Parameters 

 

Variable Type Units Description Coordinate 
System 

status[100] int  Vector containing alerting routine status as well 
as other miscellaneous information 

 

Table 5.3.2 Subunit Chkrange_Full Output Parameters 

 

 

 

5.3.3 Subunit Chkrange_full Local Variables 

 

Variable Type Units Description Coordinate 
System 

ellipse_ 
check_caut 

double  elliptical range upper bound threshold factor for 
caution alert 

 

ellipse_ 
check_warn 

double  elliptical range upper bound threshold factor for 
warning alert 

 

dx2 double  x difference between pursuer and evader 
squared 

pursuer 

dy2 double  y difference between pursuer and evader 
squared 

pursuer 

dxdy double  cross term for x and y difference between 
pursuer and evader 

pursuer 

Table 5.3.3 Subunit Chkrange_full Local Variables 
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5.3.4 Subunit Chkrange_full Pseudocode 

 
Begin Chkrange_Full  
{ 
/* Check predicted position */ 
dx2 = (xtrk-xloc)*(xtrk-xloc) 
dy2 = (ytrk-yloc)*(ytrk-yloc) 
dxdy = (xtrk-xloc)*(ytrk-yloc) 
ellipse_check_caut = e1c*dx2 + e2c*dxdy + e3c*dy2 
ellipse_check_warn = e1w*dx2 + e2w*dxdy + e3w*dy2 
 
/* Check for caution alert */ 
if ( (tpred <= ctime)                                                
 && (ellipse_check_caut <= e4c)                                 
 && (t_enter_vert_caut <= tpred)  
 && (t_exit_vert_caut >= tpred) ) { 
                status[cbit] = TRUE                                  
} 
 
/* Check for warning alert */ 
if ( (tpred <= wtime)                                                 
 && (ellipse_check_warn <= e4w)            
 && (t_enter_vert_warn <= tpred)  
 && (t_exit_vert_warn >= tpred) ) { 
                status[wbit] = TRUE                        
} 
 
return 
}    /* End Chkrange_full */ 
 

5.4 Subunit Chktrack_full Description 

Called from: Larcalert_full 

Purpose:  Check current fan leg for instantaneous intrusion of the intruder into the evader’s 
protected alert zone.   

 

5.4.1 Subunit Chktrack_full Input Parameters 

Variable Type Units Description Coordinate 
System 

tpred double sec time allotted for forward prediction of current 
states. 

 

xtrk double ft x position along arc, start of tangent track pursuer 
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Variable Type Units Description Coordinate 
System 

ytrk double  ft y position along alrc, start of tangent track pursuer 

gs double ft/sec ground speed of pursuer aircraft  

xloc double feet x position of evader aircraft pursuer 

yloc double feet y position of evader aircraft pursuer 

gsloc double sec ground speed of evader aircraft  

trkloc double rad track angle of evader aircraft pursuer 

tantrk double rad heading of tangent track pursuer 

e1c double  e1 coefficient for rotated caution ellipse  

e2c double  e2 coefficient for rotated caution ellipse  

e3c double  e3 coefficient for rotated caution ellipse  

e4c double  e4 coefficient for rotated caution ellipse  

e1w double  e1 coefficient for rotated warning ellipse  

e2w double  e2 coefficient for rotated warning ellipse  

e3w double  e3 coefficient for rotated warning ellipse  

e4w double  e4 coefficient for rotated warning ellipse  

ctime double sec states project-ahead time for determining 
caution alert 

 

wtime double  sec states project-ahead time for determining 
warning alert 

 

t_enter_vert
_ caut 

double sec time at which the pursuer will enter the evader’s 
vertical protected threshold: caution level 

 

t_enter_vert
_ warn 

double sec time at which the pursuer will enter the evader’s 
vertical protected threshold: warning level 

 

t_exit_vert_ 
caut 

double sec time at which the pursuer will exit the evader’s 
vertical protected threshold: caution level 

 

t_exit_vert_ 
warn 

double sec time at which the pursuer will exit the evader’s 
vertical protected threshold: warning level 

 

cbit int  indice used to indicate access status to caution 
array 
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Variable Type Units Description Coordinate 
System 

wbit int  indice used to indicate access status to warning 
array 

 

Table 5.4.1 Subunit Chktrack_full Input Parameters 

 

5.4.2 Subunit Chktrack_full Output Parameters 

Variable Type Units Description Coordinate 
System 

status[100] int  Vector containing alerting routine status as well 
as other miscellaneous information 

 

Table 5.4.2 Subunit Chktrack_full Output Parameters 

5.4.3 Subunit Chktrack_full Local Variables 

Variable Type Units Description Coordinate 
System 

dx double ft aircraft x separation at time tpred intruder 

dy double ft aircraft y separation at time tpred intruder 

dxdt double ft/sec relative x axis groundspeed intruder 

dydt double ft/sec relative y axis groundspeed intruder 

tau double sec time to halfway between entry and exit  

t_enter_hor double sec  time that horizontal threshold is entered  

t_exit_hor double sec  time that horizontal threshold is exited  

t_end_check
_caut 

double sec time from current to end check (Caution)  

t_end_check
_warn 

double sec  time from current to end check (Warning)  

time_band double sec time width inside cylinder  

ellipse_ 
check 

double  variable to compute ellipse bounds check  

Table 5.4.3 Subunit Chktrack_full Local Variables 



 
 

54

5.4.4 Subunit Chktrack_Full Algorithm Pseudocode 

 
local constant definition: 
    VERTEX_THRESHOLD = 0.05 
 
Begin Chktrack_full 
{ 
/* Compute relative position and relative ground speed */ 
dx = xtrk-xloc 
dy = ytrk-yloc 
dxdt = gs*cos(tantrk) - gsloc * cos(trkloc)  
dydt = gs*sin(tantrk) - gsloc * sin(trkloc)  
 
/* Check relative distances constant case) */   
if ((fabs(dxdt) < 0.1) && (fabs(dydt) < 0.1)) {  
      
    /* Check caution alert level */ 
    ellipse_check = e1c*dx*dx + e2c*dx*dy + e3c*dy*dy 
    if ((ellipse_check <= e4c) && (t_enter_vert_caut < ctime) && 
       (t_exit_vert_caut > tpred)){ 
            status[cbit] = TRUE 
    }  
 
    /* Check warning alert level */ 
    ellipse_check = e1w*dx*dx + e2w*dx*dy + e3w*dy*dy 
    if ((ellipse_check <= e4w) && (t_enter_vert_warn < wtime) && 
       (t_exit_vert_warn > tpred) && (tpred < wtime)){ 
            status[wbit] = TRUE 
    }  
    return 
} 
 
 
/* Evaluate case for caution alert                          */ 
 
/* Compute quadratic equation terms for time pursuer breach separation distance */ 
a = e1c*dxdt*dxdt +  e2c*dxdt*dydt + e3c*dydt*dydt 
b = 2.0*e1c*dx*dxdt + e2c*(dx*dydt + dy*dxdt) + 2.0*e3c*dy*dydt 
     
 
/* Compute time to halfway between entry and exit (tau)                    */ 
/* Note: under elliptical formulation, tau represents halfway time between */ 
/* entry and exit times.  Not necessarily the point of closest approach    */ 
tau = -b/(2.0*a) + tpred 
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/* compute time at which we will no longer check for breach */ 
t_end_check_caut = ctime 
if (t_exit_vert_caut <= t_end_check_caut) t_end_check_caut = t_exit_vert_caut 
     
/* Evaluate quadratic to determine times of separation distance breach (if any) */ 
/* If necessary, determine collison status by comparison to vertical breach times */  
c = e1c*dx*dx + e2c*dx*dy + e3c*dy*dy - e4c 
d = b*b - 4.0*a*c 
if (d <= -VERTEX_THRESHOLD) { 
      /* intruder trajectory never breaches horizontal thresholds */ 
      /**MRCJ status[cbit] = FALSE   **/ 
} else if (d <= VERTEX_THRESHOLD) { 
      /* intruder trajectory intersects horizontal thresholds at vertex */ 
      if ( (tau >= t_enter_vert_caut) && (tau <= t_end_check_caut)){ 
                status[cbit] = TRUE 
            } 
} else { 
      /* intruder trajectory breaches horizontal thresholds */ 
      time_band = sqrt(d)/(2.0*a) 
      t_enter_hor = tau - time_band  
      t_exit_hor  = tau + time_band  
       
      /* Check horizotal, vertical, and end check times for alert         */ 
      if (    (t_exit_hor > t_enter_vert_caut) 
           && (t_enter_hor < t_end_check_caut) 
           && (t_enter_vert_caut <= t_end_check_caut+0.01) 
           && (t_exit_hor > tpred) 
           && (t_exit_vert_caut > tpred)) { 
                status[cbit] = TRUE 
      } 
}  /* End of if (d <= -VERTEX_THRESHOLD) clause */ 
 
 
/* Evaluate case for warning alert.                                           */ 
 
/* Compute quadratic equation terms for time pursuer breach separation distance */ 
a = e1w*dxdt*dxdt +  e2w*dxdt*dydt + e3w*dydt*dydt 
b = 2.0*e1w*dx*dxdt + e2w*(dx*dydt + dy*dxdt) + 2.0*e3w*dy*dydt 
 
/* Compute time to halfway between entry and exit (tau)                    */ 
/* Note: under elliptical formulation, tau represents halfway time between */ 
/* entry and exit times.  Not necessarily the point of closest approach    */ 
tau = -b/(2.0*a) + tpred 
 
 
 
/* Compute time at which we will no longer check for breach */ 
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t_end_check_warn = wtime 
if (t_exit_vert_warn <= t_end_check_warn) t_end_check_warn = t_exit_vert_warn 
 
/* Evaluate quadratic to determine times of separation distance breach (if any) */ 
/* If necessary, determine collison status by comparison to vertical breach times */  
c = e1w*dx*dx + e2w*dx*dy + e3w*dy*dy - e4w 
d = b*b - 4.0*a*c 
if (d <= -VERTEX_THRESHOLD) { 
      /* intruder trajectory never breaches horizontal thresholds */ 
                /**MRCJ status[wbit] = FALSE  **/ 
} else if (d <= VERTEX_THRESHOLD) { 
      /* intruder trajectory intersects horizontal thresholds at vertex */ 
      if ( (tau >= t_enter_vert_warn) && (tau <= t_end_check_warn)){ 
                status[wbit] = TRUE 
            } 
} else { 
      /* intruder trajectory breaches horizontal thresholds */ 
      time_band = sqrt(d)/(2.0*a) 
      t_enter_hor = tau - time_band  
      t_exit_hor  = tau + time_band  
       
      /* Check horizotal, vertical, and end check times for alert         */ 
      if (    (t_exit_hor > t_enter_vert_warn) 
           && (t_enter_hor < t_end_check_warn) 
           && (t_enter_vert_warn <= t_end_check_warn+0.01) 
           && (t_exit_hor > tpred) 
           && (t_exit_vert_warn > tpred)) { 
                status[wbit] = TRUE 
      } 
} /* End of if (d <= -VERTEX_THRESHOLD) clause */ 
 
 
return 
}                    /* End Chktrack_full */ 
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6 AILS Pre-Call and Post Call Requirements and Recommendations 

This section describes processing that can or should be done prior to and after calling the AILS 
alerting algorithms, and describes how the algorithm should be called. 

6.1 Overview and Flowchart For AILS Pre and Post-processing 

The preprocessing that is performed prior to calling AILS can be classified by the level of 
importance.  Some of the functions described in this section fall under the “required” category, 
some are declared as “recommended,”  while the rest fall into the “ optional” classification.   
The descriptions of each function will indicate this classification.  The level of importance is 
also reflected in the flow chart of Figure 6.2.1, which demonstrates a recommended sequence of 
processing for the functional blocks. 

Depending upon the implementation and the format of the data that is available for AILS, some 
of the functional blocks and associated processing shown in Figure 6.2.1may increase or 
decrease in relevance and complexity. 

6.2 Calling Rate for AILS 

 

AILS Calling frequency = 1 HZ 

Current analysis has been predicated on a design call frequency of 1 Hz.  From an algorithm 
performance standpoint, it is not necessary to call AILS at a higher rate than 1 Hz.  If 
implementation considerations require that this call frequency is lowered, additional analysis 
may be required to verify adequate system performance.  The algorithm may actually perform 
worse at a higher execution rate since it will get more false alarms and would require additional 
processor throughput. 

If the algorithm is to be called at a rate other than 1 HZ, no modifications are required to the 
call list of Larcalert_Full:  There is no time step argument to the core AILS algorithm.  
However, prior to calling AILS, if a track rate filter (see section 6.5) is employed, the 
deltat_call to that filter should be appropriately adjusted. 
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Begin AILS Executive Processing

Perform initializations if necessary:
•Process runway information
•Initialize filters and states

Convert to AILS coordinates

Extrapolate states to current time

Perform eligibility tests.  Determine AILS paired status criteria

Compute track rate

Set pointers for own ship processing

Compute relative position, velocity, and bearing from adjacent to own

Filter track rate

Perform initializations if necessary:
•Process runway information
•Initialize filters and states

Convert to AILS coordinates

Extrapolate states to current time

Compute track rate

Filter track rate

Set pointers for adjacent ship processing

Detect own ship on/off approach.

Detect adjacent ship on/off approach

    Set snap conditions.  Adjust ellipse size and alert times: See section

If necessary, post process alerts: See section

Call Larcalert_Full

End of executive AILS processing

Required

Optional

Recommended

Functionality Requirement

 

Figure 6.2.1 Relevant Pre and Post Processing For Larcalert_full 

2.8 

2.8 
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6.3 Conversion To AILS Coordinates 

The format of the aircraft navigation variables will depend upon the specific components and 
implementation of the system that hosts AILS.  These variables will likely need to be 
transformed from the available format into the local AILS runway coordinate system.  This 
transformation will typically require the knowledge aircraft states in conjunction with the local 
approach parameters.  Figure 6.3.1 below demonstrates such a conversion.  The approach data 
will likely be constant, while the aircraft data will be periodic. 

 

 

Figure 6.3.1 Conversion to AILS Coordinates 

 

For detailed descriptions of the AILS local runway coordinate system, see section 3.2:  
Definition Of Internal AILS Coordinate System. 

6.4 Track and Track Rate Derivation 

During its trajectory predictions and extrapolations, AILS requires turn information in the form 
of track rate.  Depending on the avionics of the implemented system, track rate may not be 
available.  If not, track rate must be derived from the horizontal velocity vector components. 

 

 

 

Convert to AILS
Coordinates

Aircraft  data:
lat, lon, msl alt,
north velocity,
east velocity
vertical velocity

Approach data:
Approach datum point coordinates
Approach heading parameters
Glide path angle
Datum point crossing height

Aircraft states
runway coordinates:
 x, y, h, vx, vy, vh

Perform conversion for own ship and adjacent ship
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The following equations are a suggested derivation method for track track rate: 

 

Equations For Track Rate Derivation 

delta_time = time(k) – time(k-1) 

track_angle(k) = atan2(ownship_velocity_east(k),ownship_velocity_north(k)) 

track_angle_rate(k) = (track_angle(k) – track_angle(k-1))/delta_time 

Table 6.4.1 Equations For Track Rate Derivation 

Note that the derived track angle is with respect to true north in a North-East-Down (NED) 
coordinate frame.  This track and track rate may need to be further transformed into the AILS 
runway coordinate system. 

It is also possible that the derived track rate can be noisy due to the differentiation of noisy 
velocity components.  Section 6.5 discusses use of a track rate filter to alleviate this problem. 

6.5 Track Rate Filter 

Differentiated noisy velocity components will produce noisy derived track rates. Gusts, 
turbulence, and the pilot’s flying characteristics will also contribute to noisy or exaggerated 
track rates. 

Figure 6.5.1 Track Rate Filter 

 

Noisy track rates can affect the algorithm in an adverse manner because false or exaggerated 
turn rates can lead to misleading extrapolations of aircraft states.  This can contribute to false 
alarm or unnecessary alert outcomes of AILS.  It is therefore highly recommended that the 
derived track rates are filtered using a first order lag.  

 

Rather than specifying the filter constant “a” directly, it is recommended that a frequency ratio 
factor be specified instead.   This is to assure stability of the designed filter under all calling 
rates.  The frequency ratio is defined as: 

filter_frequency, a = frequency_ratio_factor / calling_period 

 

as

a

+
Track Rate Filtered Track Rate
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This first order filter was digitally implemented for track-rate processing of the current version 
of AILS.   The following parameters were used: 

calling period = 1 sec 

frequency_ratio_factor = .18 

a = .18 radians/sec 

 

6.6 Data Integrity Test 

Current analysis of the AILS system will allow engineers to assess the performance of AILS 
under the implemented system configuration.  Sensitivity analysis will show how system 
performance metrics will vary with the data characteristics.   Data integrity limits can be 
deduced from such analysis and such limits should be applied in some form of data integrity 
test. 

An example would be that of the horizontal position error from the differential GPS system.   
Sensitivity analysis can determine acceptable values of GPS system Horizontal Figure Of Merit 
(HFOM) that allow the system to meet performance metrics.   Integrity limits can then be 
specified where failure to pass HFOM tests would preclude aircraft from being paired under 
AILS protection.  Such tests should be applied for all relevant navigation data used by the AILS 
algorithm.  The relevant data to be verified is listed: 

� horizontal and vertical velocities 

� horizontal and vertical positions 

The analysis and tests should typically address the following attributes: 

� uncorrelated errors (noise) 

� first and second order errors of the states 

� latency errors 

� time tagging accuracy and time uncertainty errors 

� parameter update rate 

6.7 Extrapolate and Time Align Data 

Aircraft position and velocity data that are available to the AILS algorithm prior to calling 
AILS will likely have originated from two sources: the own ship and the adjacent ship.  
Depending on the system and implementation, the data should have proper time tags associated 
with the time of validity of the data.   

Prior to calling AILS, and prior to comparing the data in a common frame of reference, the data 
should be extrapolated and aligned to the current system time in the processor of the own ship.  
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This should be performed by using straight first order extrapolation of velocity to the position 
states: 

x (extrapolated) = x (time_tagged) + dx/dt * time_delta_from_tagged_to_current 

y (extrapolated) = y (time_tagged) + dy/dt  * time_delta_from_tagged_to_current 

h (extrapolated) = h (time_tagged) + dh/dt * time_delta_from_tagged_to_current 

where the time_delta_from_tagged_to_current is the time delta between the time-of-validity for 
the data and the current time prior to calling AILS. 

 

6.8 Compute Range, Range Rate, and Bearing to the Potential AILS Aircraft 

Although not a requirement for output from AILS, it can be useful to compute values such as 
the relative range, range rate, and bearing to aircraft that are emitting ADS-B in the vicinity of 
the own aircraft.   This information can be useful in determining if these aircraft are of potential 
threat (see section 6.9) to each other.  In the case where the aircraft are NOT mutual threats, 
AILS would NOT be called which will prevent these values from being internally computed 
within AILS.   If the user relied on these parameters for system functions such as displays, it is 
recommended that these values be computed outside of core AILS, regardless of whether or not 
AILS is called.    

When the aircraft navigation states have been converted to local runway coordinates, the x, y, 
and h positions will be relative to each ship’s runway datum point.  Transformations must be 
performed to get the aircraft into a single coordinate system before the relative states can be 
computed.  Such coordinate transformations were described in detail in section 3.2:  Definition 
Of Internal AILS Coordinate System. 

 

6.9 Determine AILS Aircraft Pairing 

Recall that an AILS “pair” constitutes two aircraft that are in a simultaneous parallel approach 
situation and are under protection of the AILS algorithm:  AILS is invoked with these aircraft 
as players in the own ship/adjacent ship scenario.  Any particular aircraft on an approach at any 
time can be paired with more than one other aircraft that is of potential threat. 

Aircraft should become eligible to be paired only if they are established on final approach.  The 
AILS Path Length (APL) should be used as a factor to certify that an aircraft is close enough to 
the appropriate runway in order to be declared as being on final approach.  Recall that once the 
inbound aircraft enter the APL, they may begin to lose the required 1000 ft vertical separation. 

Once on final approach, it may still be impractical to pair all aircraft on the approach with all 
the other aircraft on the adjacent parallel approach.  Only aircraft that can potentially threaten 
each other should be paired.  It is therefore recommended that criteria should be established to 
determine which aircraft to designate as AILS pairs.  The criteria can be based on parameters 
such as range and range-rate between the aircraft.  Additionally, there should be smooth 
transitions between the predominant overall separation assurance system (probably TCAS) and 
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AILS alerting.  The following subsection provides in C code form, the logic that was used to 
determine AILS pairing under configuration implemented in the simulation and flight tests in 
1999. 

 

6.9.1 Range Pairs Test Code 

This supplemental section contains the code used to determine AILS pairing based on range 
and range rate.   The determination of pairing is also a function of whether or not the aircraft 
being tested is currently paired.  Therefore, the parameter casper_pairs_flag is an input/output 
parameter that reflects the pairing mode before this routine is called.   The commanded pairing 
mode is reflected in the casper_pairs_flag upon return from the routine.   Instructions for 
setting this flag can also be seen in Table 6.9.1. 

 

variable type units notes 

range double feet range to other aircraft 

range_rate double feet/sec range rate to other aircraft 

casper_pairs
_flag 

int boolean Input/Output parameter.   The current paired status with 
respect to the aircraft in question has to be properly 
reflected in this variable prior to call.  Upon return, the 
commanded pairing status is reflected in the variable. 

Input setting of casper_pairs_flag: 

      If currently paired, casper_pairs_flag = TRUE or 1 

      If currently not paired, casper_pairs_flag = FALSE or 0 

Upon output, this flag is readjusted  by the routine to 
reflect whether or to designate the aircraft as a pair. 

Output result of casper_pairs_flag: 

      If casper_pairs_flag = 1 or TRUE , then paired 

      If casper_pairs_flag = 0 or FALSE, then not paired 

Table 6.9.1 Range Pairs Test Parameters 

 

Following is the C code that was used to determine CASPER pairing: 

#define DMOD_TURN_ON 9721.6       /* 1.6 nm */ 
#define DMOD_TURN_OFF 10633      /* 1.75  nm */ 
#define THRESHOLD_TIME 30.0 
 
void  range_pairs_test (double range,double range_rate,int *casper_pairs_flag) 
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{ 
double adjusted_range_rate; 
double tau_mod; 
 
if (range_rate > 10.0) { 
 
    /* perform diverging aircraft range test */ 
    if (*casper_pairs_flag == ON) { 
       /* casper pairs mode is on, test for turn off */ 
       if (range > DMOD_TURN_OFF)  
          *casper_pairs_flag = OFF; 
       else  
          *casper_pairs_flag = ON; 
    } else { 
       /* casper pairs mode is off, test for turn on */ 
       if (range > DMOD_TURN_ON)  
           *casper_pairs_flag = OFF; 
       else  
           *casper_pairs_flag = ON; 
    } 
 
} else if (range_rate <= 10) { 
    /* perform converging aircraft range test */ 
 
    /* compute adjusted range rate */ 
    if (range_rate > -10.0)  
       adjusted_range_rate = -10.0; 
    else 
       adjusted_range_rate = range_rate; 
     
    if (*casper_pairs_flag == OFF)  
        /* casper mode is off, test for turn on */ 
        tau_mod = -(range-
(DMOD_TURN_ON*DMOD_TURN_ON)/range)/adjusted_range_rate; 
    else 
        /* casper pairs mode is on, test for turn off */ 
        tau_mod = -(range-
(DMOD_TURN_OFF*DMOD_TURN_OFF)/range)/adjusted_range_rate; 
 
    if ((tau_mod - THRESHOLD_TIME) <= 0.0) 
         *casper_pairs_flag = ON; 
    else 
         *casper_pairs_flag = OFF; 
 
} 
} 
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6.10 On-Approach/Off Approach Determination 

AILS requires knowledge as to whether or not an aircraft is on or off of it’s approach.  The 
following criteria is used as a guideline: 

Aircraft declared OFF APPROACH if either of the following conditions are true: 

1. More than 2 dots of vertical deviation. 

2. More than 2 dots of lateral deviation OR more than 400 ft of lateral deviation to either side 
of the approach path. 

6.11 Ellipse and Time Parameter Adjustments 

When one or both aircraft are off-approach, the alert parameters are adjusted since we know 
which aircraft is to blame for collision threats, as discussed in 2.8: Ellipse Size Adjustments If 
Aircraft is Off Approach.   

6.12 Data Requirements Summary and Default Values 

Table 5.1.1 in section 5.1.1 describes the input/output parameters to the Larcalert_full 
algorithm. Table 6.12.1 shows a summary of the input variables to AILS.   Some of the 
variables to be provided to AILS are created by the preprocessing algorithms described in 
sections 6.1- 6.11.   Other variables are algorithm design parameters that are simply set.  The 
remainder of this section summarizes the requirements for all variables that are to be set. 

6.12.1 AILS Parameter Input Summary Table 

Variable Class Characteristics Variables Description 
Reference 

own aircraft states changes with each 
call 

osxpos, osypos, osgs, ostrk, 
ostrkdot, oshpos  

 Table 5.1.1 

adjacent aircraft 
states 

changes with each 
call 

ajxpos, ajypos, ajgs, ajtrk, 
ajtrkdot, ajh 

Table 5.1.1 

own approach constant osglide,ostch Table 3.5.1 

adjacent approach constant ajglide,ajtch Table 3.5.1 

adjacent approach 
relative to own 

constant ajx_dp_offset, ajy_dp_offset, 
ajh_dp_offset 

Table 5.1.3 

Table 5.1.1 

alerting parameters constant, but 
parameters can be 
swapped if aircraft 
off approach 

alvup, alvdown, aldst_e, 
protected_esc 

Table 3.5.1 

Table 5.1.1 

algorithm 
parameters 

constant trkratedb, turntime, tstep Table 5.1.1 



 
 

66

Variable Class Characteristics Variables Description 
Reference 

snap flags depends on if 
aircraft on approach 

os_snap_flag, aj_snap_flag Table 5.1.1 

Table 6.12.1 AILS Parameter Input Summary 

The following subsections describe the default settings and values for the AILS alerting and 
algorithm parameters.  These are values used under the current AILS simulation and flight test 
configurations. 

 

6.12.2 Default AILS Alerting Parameter Values 

The following list is a summary of all the current default settings for AILS algorithm and 
alerting parameters: 

aldst_e(LEVEL_1_DOWNRANGE) = 5000 (ft) 

aldst_e(LEVEL_1_CROSSRANGE) = 1800 (ft) 

alvup(LEVEL_1) =1800 (ft) 

alvdown(LEVEL_1) = 1800 (ft) 

altime(LEVEL_1) = 30 (sec) 

 

aldst_e(LEVEL_2_DOWNRANGE) = 3500 (ft) 

aldst_e(LEVEL_2_CROSSRANGE) = 1300 (ft) 

alvup(LEVEL_2) =1300 (ft) 

alvdown(LEVEL_2) = 1300 (ft) 

altime(LEVEL_2) = 22 (sec) 

 

aldst_e(LEVEL_3_DOWNRANGE) = 3400 (ft) 

aldst_e(LEVEL_3_CROSSRANGE) = 1250 (ft) 

alvup(LEVEL_3) =1250 (ft) 

alvdown(LEVEL_3) = 1250(ft) 

altime(LEVEL_3) = 21 (sec) 

 

aldst_e(LEVEL_4_DOWNRANGE) = 2500 (ft) 
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aldst_e(LEVEL_4_CROSSRANGE) = 900 (ft) 

alvup(LEVEL_4) =900 (ft) 

alvdown(LEVEL_4) = 900 (ft) 

altime(LEVEL_4) = 16 (sec) 

 

6.12.3 Default AILS Algorithm Parameters 

tstep = 0.5 (sec) 

turntime = 99 (sec) 

trkratedb = 0.00024 (rad/sec) 

Note that selecting turntime = 99 sec, is effectively disabling the turn limit feature.  See section 
2.11 (page 12). 

 

6.12.4 Default Protected Escape Zone Parameters 

The following parameter values represent a defeated or disabled setting for the protected escape 
zone.  The key switch to disable the zone is the lateral distance set to a very large negative 
number.  This moves the protected zone far out in the direction opposite of the adjacently 
paired aircraft.  

protected_esc[LATERAL] = -999999 (ft) 

protected_esc[ABOVE] = 0 (ft) 

protected_esc[BELOW] =  0 (ft) 

protected_esc[AHEAD] =  0 (ft) 

protected_esc[BEHIND] = 0 (ft) 

 

6.13 Status Array Interpretation 

The AILS main routine returns the status vector which indicates the instantaneous alerting 
status of AILS.  The instantaneous status indicators are listed here: 

status[LEVEL_1] = 0 or 1 : 1 indicates AILS level 1 alert TRUE , 0 indicates FALSE 

status[LEVEL_2] = 0 or 1 : 1indicates AILS level 2 alert TRUE , 0 indicates FALSE 

status[LEVEL_3] = 0 or 1 : 1 indicates AILS level 3 alert TRUE , 0 indicates FALSE  

status[LEVEL_4] = 0 or 1 : 1 indicates AILS level 4 alert TRUE , 0 indicates FALSE 
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status[PROTECTED_ESC_LEV_3] = 0 or 1 : 1 indicates own ship in adjacent ship’s 
protected escape zone, 0 indicates NO zone violation 

status[PROTECTED_ESC_LEV_4] = 0 or 1 : 1 indicates adjacent ship in own ship’s 
protected escape zone, 0 indicates NO zone violation 

 

Recall the following alert status definitions: 

Level 1 : Caution for own ship intruding at adjacent ship 

Level 2 : Caution for adjacent ship intruding at own ship 

Level 3 : Warning for own ship intruding at adjacent ship 

Level 4 : Warning for adjacent ship intruding at own ship 

Note that the status vector returned represents AILS operation based on instantaneous current 
information.  There is no memory, persistence, or hysteresis effect on the alert levels.  It is up to 
the user and calling routines to provide such conditions if desired. (For example, once a level 4 
alert is issued, the top level operators will choose to impose a permanent level 4 situation.  
Likewise, some hysteresis effect may be desired for the alert levels to prevent on/off toggling 
status along the boundary conditions). 

6.14 Static vs Dynamic Memory Allocation Requirements For AILS 

Internal AILS has NO static variables. 

Some of the variables that are involved in the preprocessing prior to AILS involve filters and 
states which will require some of those variables to be static. 
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7 AILS EQUATIONS 

This section shows derivations of some of the equations that the AILS algorithms are based on. 

7.1 Turn Radius 

This section shows a derivation of turn radius that is used in a variety of locations. 

 Side accel 
radius

V
 

2
g=  [Centripital acceleration]    (1) 

 Lift  
φcos

g * m
 =  [Vertical equilibrium]    (2) 

 Side force φφ  tan* g * m  sin *lift  ==      (3) 

 φ tan* g  
radius

V
 

2
g=        (4) 

 Radius  
φ tan* g

V
 

2
g=        (5) 

7.2 Inside A Rotated Ellipse 

This section derives the equations used to detect if one aircraft is inside an ellipse shaped 
protected region of another aircraft.  To accommodate non-parallel approach paths, the ellipse 
is rotated by the difference in approach headings (Figure 7.2.1 Rotated Ellipse Coordinates). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.1 Rotated Ellipse Coordinates 
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First, the basic equations of an ellipse. 

1 
2

2

2

2

crsnrng
y

dwnrng
x

 +=  (6) 

22crsrngdwnrng    2222 ydwnrngxcrsrng   +=  (7) 

Then, the equations for a coordinate rotation. 

x  ψψ  sin yy -  cos xx =  (8) 

y  ψψ  cos yy   sin xx +=  (9) 

Squaring these two equations: 

2x  ψψψψ 2222 sinyy sin  cos xx yy 2 - cos  xx +=  (10) 

2y  ψψψψ 2222 cosyy sin  cos xx yy 2  sin  xx ++=  (11) 

Then, substituting these back into equation (7) 

22crsrngdwnrng    )sinyy sin  cos xx yy 2 - cos xx(crsrng   22222 ψψψψ +=  

            )cosyy sin  cos xx yy 2  sin xx(dwnrng 22222 ψψψψ +++  

  (12) 

and collecting terms. 

22crsrngdwnrng    22222 xx) cos crsrngsinwnrngd(   ψψ +=  

            xxyy sin  cos2)crsrngdwnrng( 22 ψψ−+  

            22222 yy)sincrsrng   cos dwnrng( ψψ ++  (13) 

Define 4 intermediate variables for convenience: 

1E  ) cos crsrngsinwnrngd(   2222 ψψ +=  (14) 

2E  ψψ  sin  cos2)crsrngdwnrng( 22 −=  (15) 

3E  )sincrsrng   cos dwnrng( 2222 ψψ +=  (16) 

4E  22crsrngdwnrng=    (17) 

Then, the second aircraft is in the first aircraft’s ellipse if: 

4E    22 y  3    2   1  yEyyxxExxE ++>=  (18) 

 

7.3 Inside Ellipse For Future Track 

To check if an aircraft will be in the ellipse of another aircraft at the current time or a future 
time, first the relative positions must be expressed. 
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dx(t)  (t) x- (t) x osaj=  (19) 

dy(t)  (t) y- (t) y osaj=  (20) 

To check if one aircraft is currently in the other aircraft’s ellipse, equations (19) and (20) can be 
used for xx and yy in equation (18).  (This is performed in subroutine CHKRANGE.) 

To check if one aircraft will be in the other aircraft’s ellipse in the future, the relative positions 
must be predicted in the future.  (This is performed in subroutine CHKTRACK.) 

dxdt  trkloc cos * V- trk cos *  Vdx 
dt
d

 
osaj gg==  (21) 

dydt  trkloc sin * V-trk sin *  Vdx 
dt
d

 
osaj gg==  (22) 

( )τ  tdx +  ( ) τ * dxdt  tdx +=  (23) 

( )τ  tdy +  ( ) τ * dydt  tdy +=  (24) 

Substituting equations (23) and (24) into equation (18) for xx and yy: 

4E     ) * dydt dy (  ) * dxdt dx (  2E) * dxdt dx (   1E   2 τττ ++++=  

 2) * dydt dy (  3E τ++  (25) 

Gathering terms, this can be expressed as a quadratic equation for τ. 

0c b a 22 =++ ττ  (26) 

a     22 dydt  E3  dydt  dxdt  2Edxdt   1E   ++=  (27) 

b     dydtdy   E3  2 dxdtdy   2Edydtdx   2Edxdtdx   1E  2  2 +++=  (28) 

c     4Edy  E3 dy dx    2Edx   1E   22 −++=  (29) 

 

7.4 AILS Fan Equations 

Figure 7.4.1 below shows how the equations for the aircraft position on the turn arc (xtrk, ytrk) 
can be developed. 
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Figure 7.4.1 Calculation of Position on Turn Arc 
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8 Appendix A.  Acronyms and Abbreviations 

ADS-B Automatic Dependent Surveillance-Broadcast 
AILS Airborne Information for Lateral Spacing 
AJ adjacent ship or other ship 
APL AILS Path Length 
ATC Air Traffic Control 
Baro barometric 
CSPA closely spaced parallel approaches 
deg degree 
DGPS Differential Global Positioning System 
DME distance measuring equipment 
DP datum point 
ECEF Earth-Centered, Earth-Fixed 
EEM Emergency Escape Maneuver 
EFIS Electronic Flight Instrument System 
FMS Flight Management System 
FOM figure of merit 
ft foot or feet 
GNSSU Global Navigation System Sensor Unit 
GPS Global Positioning System 
IRS Inertial Reference System 
IRU Inertial Reference Unit 
LSB least significant bit 
kts knots 
m meters 
MAP Missed Approach Procedure 
MASPS Minimum Aviation System Performance Standards 
nm nautical miles 
OS own ship 
rad radians 
RTCA Radio Technical Commission for Aeronautics 
s, sec second 
SLS Satellite Landing System 
TBD to be determined 
TCAS Traffic Alert and Collision Avoidance System 
TCP threshold crossing point 
UTC universal time coordinate 
VHF Very High Frequency 
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9 Appendix B. Glossary 

AILS The NASA program for developing alerting algorithms for closely spaced 
parallel approaches.  Also refers to the alerting logic used once the 
aircraft are established on a parallel approach. 

 
AILS Path Length The distance from the runway threshold to the point where we start 

separating the aircraft with AILS 
 
ARINC Communications standard 
 
CASPER The Honeywell program for developing alerting algorithm for closely 

spaced parallel approaches.  Also refers to the algorithms wrapped 
around AILS that assign CASPER targets, do integrity checking, and 
manage the interaction with TCAS. 

 
CASPER target Aircraft for which we provide blunder protection using the 

CASPER/AILS system.  All other aircraft are TCAS targets 
 
glidepath The three-dimensional path in space that describes the approach path 
 
glideslope angle The angle between the glidepath and a horizontal plane tangent to the 

Earth’s surface at the datum point 
 
TCAS target Aircraft for which collision avoidance protection is provided by TCAS.  

This is true for all aircraft except those on a parallel runway for which we 
use the AILS alerting algorithms for protection. 
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